Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Exploring the floristic diversity of tropical Africa

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11310%2F17%3A10370649" target="_blank" >RIV/00216208:11310/17:10370649 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1186/s12915-017-0356-8" target="_blank" >http://dx.doi.org/10.1186/s12915-017-0356-8</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1186/s12915-017-0356-8" target="_blank" >10.1186/s12915-017-0356-8</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Exploring the floristic diversity of tropical Africa

  • Popis výsledku v původním jazyce

    Understanding the patterns of biodiversity distribution and what influences them is a fundamental pre-requisite for effective conservation and sustainable utilisation of biodiversity. Such knowledge is increasingly urgent as biodiversity responds to the ongoing effects of global climate change. Nowhere is this more acute than in species-rich tropical Africa, where so little is known about plant diversity and its distribution. In this paper, we use RAINBIO - one of the largest mega-databases of tropical African vascular plant species distributions ever compiled - to address questions about plant and growth form diversity across tropical Africa. The filtered RAINBIO dataset contains 609,776 georeferenced records representing 22,577 species. Growth form data are recorded for 97% of all species. Records are well distributed, but heterogeneous across the continent. Overall, tropical Africa remains poorly sampled. When using sampling units (SU) of 0.5 degrees, just 21 reach appropriate collection density and sampling completeness, and the average number of records per species per SU is only 1.84. Species richness (observed and estimated) and endemism figures per country are provided. Benin, Cameroon, Gabon, Ivory Coast and Liberia appear as the botanically best-explored countries, but none are optimally explored. Forests in the region contain 15,387 vascular plant species, of which 3013 are trees, representing 5-7% of the estimated world&apos;s tropical tree flora. The central African forests have the highest endemism rate across Africa, with approximately 30% of species being endemic. The botanical exploration of tropical Africa is far from complete, underlining the need for intensified inventories and digitization. We propose priority target areas for future sampling efforts, mainly focused on Tanzania, Atlantic Central Africa and West Africa. The observed number of tree species for African forests is smaller than those estimated from global tree data, suggesting that a significant number of species are yet to be discovered. Our data provide a solid basis for a more sustainable management and improved conservation of tropical Africa&apos;s unique flora, and is important for achieving Objective 1 of the Global Strategy for Plant Conservation 2011-2020. In turn, RAINBIO provides a solid basis for a more sustainable management and improved conservation of tropical Africa&apos;s unique flora.

  • Název v anglickém jazyce

    Exploring the floristic diversity of tropical Africa

  • Popis výsledku anglicky

    Understanding the patterns of biodiversity distribution and what influences them is a fundamental pre-requisite for effective conservation and sustainable utilisation of biodiversity. Such knowledge is increasingly urgent as biodiversity responds to the ongoing effects of global climate change. Nowhere is this more acute than in species-rich tropical Africa, where so little is known about plant diversity and its distribution. In this paper, we use RAINBIO - one of the largest mega-databases of tropical African vascular plant species distributions ever compiled - to address questions about plant and growth form diversity across tropical Africa. The filtered RAINBIO dataset contains 609,776 georeferenced records representing 22,577 species. Growth form data are recorded for 97% of all species. Records are well distributed, but heterogeneous across the continent. Overall, tropical Africa remains poorly sampled. When using sampling units (SU) of 0.5 degrees, just 21 reach appropriate collection density and sampling completeness, and the average number of records per species per SU is only 1.84. Species richness (observed and estimated) and endemism figures per country are provided. Benin, Cameroon, Gabon, Ivory Coast and Liberia appear as the botanically best-explored countries, but none are optimally explored. Forests in the region contain 15,387 vascular plant species, of which 3013 are trees, representing 5-7% of the estimated world&apos;s tropical tree flora. The central African forests have the highest endemism rate across Africa, with approximately 30% of species being endemic. The botanical exploration of tropical Africa is far from complete, underlining the need for intensified inventories and digitization. We propose priority target areas for future sampling efforts, mainly focused on Tanzania, Atlantic Central Africa and West Africa. The observed number of tree species for African forests is smaller than those estimated from global tree data, suggesting that a significant number of species are yet to be discovered. Our data provide a solid basis for a more sustainable management and improved conservation of tropical Africa&apos;s unique flora, and is important for achieving Objective 1 of the Global Strategy for Plant Conservation 2011-2020. In turn, RAINBIO provides a solid basis for a more sustainable management and improved conservation of tropical Africa&apos;s unique flora.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10618 - Ecology

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    BMC Biology

  • ISSN

    1741-7007

  • e-ISSN

  • Svazek periodika

    15

  • Číslo periodika v rámci svazku

    March

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    23

  • Strana od-do

  • Kód UT WoS článku

    000395477900002

  • EID výsledku v databázi Scopus