New insight into isobolographic analysis for combinations of a full and partial agonist: Curved isoboles
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11310%2F18%3A10378440" target="_blank" >RIV/00216208:11310/18:10378440 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61388971:_____/18:00496199
Výsledek na webu
<a href="https://doi.org/10.1016/j.tox.2018.04.004" target="_blank" >https://doi.org/10.1016/j.tox.2018.04.004</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.tox.2018.04.004" target="_blank" >10.1016/j.tox.2018.04.004</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
New insight into isobolographic analysis for combinations of a full and partial agonist: Curved isoboles
Popis výsledku v původním jazyce
Receptor ligands in mixtures may produce effects that are greater than the effect predicted from their individual dose-response curves. The historical basis for predicting the mixture effect is based on Loewe's concept and its mathematical formulation. This concept considers compounds with constant relative potencies (parallel dose response curves) and leads to linear additive isoboles. These lines serve as references for distinguishing additive from nonadditive interactions according to the positions of the experimental data on or outside of the lines. In this paper, we applied a highly relevant two-state model for a description of the receptor-ligand interaction in the construction of the isobologram. In our model we consider partial agonists that have dose-response curve slopes differing from one. With this theoretical basis, we demonstrated that a combination of compounds with different efficacies leads to curved isoboles. This model should overwrite Tallarida's flawed assumption about isobolographic analysis of partial agonists and enhance our understanding of how the partial agonists contribute to the overall mixture effect.
Název v anglickém jazyce
New insight into isobolographic analysis for combinations of a full and partial agonist: Curved isoboles
Popis výsledku anglicky
Receptor ligands in mixtures may produce effects that are greater than the effect predicted from their individual dose-response curves. The historical basis for predicting the mixture effect is based on Loewe's concept and its mathematical formulation. This concept considers compounds with constant relative potencies (parallel dose response curves) and leads to linear additive isoboles. These lines serve as references for distinguishing additive from nonadditive interactions according to the positions of the experimental data on or outside of the lines. In this paper, we applied a highly relevant two-state model for a description of the receptor-ligand interaction in the construction of the isobologram. In our model we consider partial agonists that have dose-response curve slopes differing from one. With this theoretical basis, we demonstrated that a combination of compounds with different efficacies leads to curved isoboles. This model should overwrite Tallarida's flawed assumption about isobolographic analysis of partial agonists and enhance our understanding of how the partial agonists contribute to the overall mixture effect.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10511 - Environmental sciences (social aspects to be 5.7)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Toxicology
ISSN
0300-483X
e-ISSN
—
Svazek periodika
402-403
Číslo periodika v rámci svazku
June 2018
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
8
Strana od-do
9-16
Kód UT WoS článku
000435064100002
EID výsledku v databázi Scopus
2-s2.0-85045535851