Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Structure evolution of h.c.p./c.c.p. metal oxide interfaces in solid-state reactions

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11310%2F18%3A10382165" target="_blank" >RIV/00216208:11310/18:10382165 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1107/S205327331800757X" target="_blank" >https://doi.org/10.1107/S205327331800757X</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1107/S205327331800757X" target="_blank" >10.1107/S205327331800757X</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Structure evolution of h.c.p./c.c.p. metal oxide interfaces in solid-state reactions

  • Popis výsledku v původním jazyce

    The structure of crystalline interfaces plays an important role in solid-state reactions. The Al2O3/MgAl2O4/MgO system provides an ideal model system for investigating the mechanisms underlying the migration of interfaces during interface reaction. MgAl2O4 layers have been grown between Al2O3 and MgO, and the atomic structure of Al2O3/MgAl2O4 interfaces at different growth stages was characterized using aberration-corrected scanning transmission electron microscopy. The oxygen sublattice transforms from hexagonal close-packed (h.c.p.) stacking in Al2O3 to cubic close-packed (c.c.p.) stacking in MgAl2O4. Partial dislocations associated with steps are observed at the interface. At the reaction-controlled early growth stages, such partial dislocations coexist with the edge dislocations. However, at the diffusion-controlled late growth stages, such partial dislocations are dominant. The observed structures indicate that progression of the Al2O3/MgAl2O4 interface into Al2O3 is accomplished by the glide of partial dislocations accompanied by the exchange of Al3+ and Mg2+ cations. The interface migration may be envisaged as a plane-by-plane zipper-like motion, which repeats along the interface facilitating its propagation. MgAl2O4 grains can adopt two crystallographic orientations with a twinning orientation relationship, and grow by dislocations gliding in opposite directions. Where the oppositely propagating partial dislocations and interface steps meet, interlinked twin boundaries and incoherent Sigma 3 grain boundaries form. The newly grown MgAl2O4 grains compete with each other, leading to a growth selection and successive coarsening of the MgAl2O4 grains. This understanding could help to interpret the interface reaction or phase transformation of a wide range of materials that exhibit a similar h.c.p./c.c.p. transition.

  • Název v anglickém jazyce

    Structure evolution of h.c.p./c.c.p. metal oxide interfaces in solid-state reactions

  • Popis výsledku anglicky

    The structure of crystalline interfaces plays an important role in solid-state reactions. The Al2O3/MgAl2O4/MgO system provides an ideal model system for investigating the mechanisms underlying the migration of interfaces during interface reaction. MgAl2O4 layers have been grown between Al2O3 and MgO, and the atomic structure of Al2O3/MgAl2O4 interfaces at different growth stages was characterized using aberration-corrected scanning transmission electron microscopy. The oxygen sublattice transforms from hexagonal close-packed (h.c.p.) stacking in Al2O3 to cubic close-packed (c.c.p.) stacking in MgAl2O4. Partial dislocations associated with steps are observed at the interface. At the reaction-controlled early growth stages, such partial dislocations coexist with the edge dislocations. However, at the diffusion-controlled late growth stages, such partial dislocations are dominant. The observed structures indicate that progression of the Al2O3/MgAl2O4 interface into Al2O3 is accomplished by the glide of partial dislocations accompanied by the exchange of Al3+ and Mg2+ cations. The interface migration may be envisaged as a plane-by-plane zipper-like motion, which repeats along the interface facilitating its propagation. MgAl2O4 grains can adopt two crystallographic orientations with a twinning orientation relationship, and grow by dislocations gliding in opposite directions. Where the oppositely propagating partial dislocations and interface steps meet, interlinked twin boundaries and incoherent Sigma 3 grain boundaries form. The newly grown MgAl2O4 grains compete with each other, leading to a growth selection and successive coarsening of the MgAl2O4 grains. This understanding could help to interpret the interface reaction or phase transformation of a wide range of materials that exhibit a similar h.c.p./c.c.p. transition.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10505 - Geology

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Acta Crystallographica. Section A: Foundations and Advances [online]

  • ISSN

    2053-2733

  • e-ISSN

  • Svazek periodika

    74

  • Číslo periodika v rámci svazku

    SEP 2018

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    15

  • Strana od-do

    466-480

  • Kód UT WoS článku

    000443900900006

  • EID výsledku v databázi Scopus

    2-s2.0-85052961017