The salivary hyaluronidase and apyrase of the sand fly Sergentomyia schwetzi (Diptera, Psychodidae)
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11310%2F18%3A10385852" target="_blank" >RIV/00216208:11310/18:10385852 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.ibmb.2018.09.010" target="_blank" >https://doi.org/10.1016/j.ibmb.2018.09.010</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ibmb.2018.09.010" target="_blank" >10.1016/j.ibmb.2018.09.010</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The salivary hyaluronidase and apyrase of the sand fly Sergentomyia schwetzi (Diptera, Psychodidae)
Popis výsledku v původním jazyce
Current knowledge of sand fly salivary components has been based solely on Lutzomyia and Phlebotomus species which feed mainly on mammals; their hyaluronidases and apyrases were demonstrated to significantly affect blood meal intake and transmission of vector-borne pathogens. Members of the third sand fly genus Sergentomyia preferentially feed on reptiles but some of them are considered as Leishmania and arboviruses vectors; however, nothing is known about their salivary components that might be relevant for pathogens transmission. Here, marked hyaluronidase and apyrase activities were demonstrated in the saliva of a Sergentomyia schwetzi colony maintained on geckos. Hyaluronidase of S. schwetzi cleaved hyaluronan as the prominent substrate, and was active over a broad pH range from 4.0 to 8.0, with a sharp peak at pH 5.0. SDS PAGE zymography demonstrated the monomeric character of the enzyme, which remained active in reducing conditions. The apparent molecular weight of 43 kDa was substantially lower than in any sand fly species tested so far and may indicate relatively low grade of the glycosylation of the enzyme. The apyrase of S. schwetzi was typical strictly Ca2 + dependent Cimex-family apyrase. It was active over a pH range from 6.5 to 9.0, with a peak of activity at pH 8.5, and had an ATPase/ADPase ratio of 0.9. The apyrase activity increased during the first 3 days post-emergence, then reached a plateau and remained relatively constant until day 8. In comparison with a majority of Phlebotomus and Lutzomyia species tested to date, both the hyaluronidase and apyrase activities of S. schwetzi were relatively low, which may reflect an adaptation of this sand fly to blood feeding on non-mammalian hosts.
Název v anglickém jazyce
The salivary hyaluronidase and apyrase of the sand fly Sergentomyia schwetzi (Diptera, Psychodidae)
Popis výsledku anglicky
Current knowledge of sand fly salivary components has been based solely on Lutzomyia and Phlebotomus species which feed mainly on mammals; their hyaluronidases and apyrases were demonstrated to significantly affect blood meal intake and transmission of vector-borne pathogens. Members of the third sand fly genus Sergentomyia preferentially feed on reptiles but some of them are considered as Leishmania and arboviruses vectors; however, nothing is known about their salivary components that might be relevant for pathogens transmission. Here, marked hyaluronidase and apyrase activities were demonstrated in the saliva of a Sergentomyia schwetzi colony maintained on geckos. Hyaluronidase of S. schwetzi cleaved hyaluronan as the prominent substrate, and was active over a broad pH range from 4.0 to 8.0, with a sharp peak at pH 5.0. SDS PAGE zymography demonstrated the monomeric character of the enzyme, which remained active in reducing conditions. The apparent molecular weight of 43 kDa was substantially lower than in any sand fly species tested so far and may indicate relatively low grade of the glycosylation of the enzyme. The apyrase of S. schwetzi was typical strictly Ca2 + dependent Cimex-family apyrase. It was active over a pH range from 6.5 to 9.0, with a peak of activity at pH 8.5, and had an ATPase/ADPase ratio of 0.9. The apyrase activity increased during the first 3 days post-emergence, then reached a plateau and remained relatively constant until day 8. In comparison with a majority of Phlebotomus and Lutzomyia species tested to date, both the hyaluronidase and apyrase activities of S. schwetzi were relatively low, which may reflect an adaptation of this sand fly to blood feeding on non-mammalian hosts.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10600 - Biological sciences
Návaznosti výsledku
Projekt
<a href="/cs/project/GA17-10308S" target="_blank" >GA17-10308S: Slinné proteiny flebotoma Sergentomyia schwetzi</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Insect Biochemistry and Molecular Biology
ISSN
0965-1748
e-ISSN
—
Svazek periodika
102
Číslo periodika v rámci svazku
NOV 2018
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
8
Strana od-do
67-74
Kód UT WoS článku
000451492600008
EID výsledku v databázi Scopus
2-s2.0-85054424189