Architecture of the femoral and tibial diaphyses in relation to body mass and composition: Research from whole-body CT scans of adult humans
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11310%2F18%3A10388476" target="_blank" >RIV/00216208:11310/18:10388476 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1002/ajpa.23713" target="_blank" >https://doi.org/10.1002/ajpa.23713</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/ajpa.23713" target="_blank" >10.1002/ajpa.23713</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Architecture of the femoral and tibial diaphyses in relation to body mass and composition: Research from whole-body CT scans of adult humans
Popis výsledku v původním jazyce
Objectives Recent investigations have evaluated the influence of body composition on long bones in order to overcome the limits of body mass (BM) estimation methods and eventually lead to studying nutrition in past populations. Knowing how fat mass (FM) and fat-free mass (FFM) impact the skeleton would also enhance the understanding of mobility, activity, and locomotion derived from bone architecture. We investigated the relationship between BM and composition, and the architecture of the entire tibial and femoral diaphyses in an adult sample representative of a wide range of variation in age, BM, and composition. Materials and methods Results Body composition was measured directly from 78 whole-body CT scans for which the age, sex, BM, and stature were recorded. The entire diaphyseal thickness, volume, curvature, and cross-sectional geometry parameters of both the femur and tibia were numerically extracted. FM correlates with large portions of the femoral thickness in females only. FFM correlates with the femoral diaphysis in males but not in females. FFM correlates with the tibia architecture in both sexes, while FM is correlated in males exclusively. Discussion BM and body components influence the architecture of the diaphysis of lower limb long bones in sex-specific patterns that are mostly reflected in their thickness and can be recorded, in some cases, for their strength, rigidity, and volume. Our results suggest that (1) long bone diaphyses should be thoroughly studied, as a whole, when possible; and (2) BM and body components should be accounted for when deriving activity, mobility, or locomotion patterns from cortical bone.
Název v anglickém jazyce
Architecture of the femoral and tibial diaphyses in relation to body mass and composition: Research from whole-body CT scans of adult humans
Popis výsledku anglicky
Objectives Recent investigations have evaluated the influence of body composition on long bones in order to overcome the limits of body mass (BM) estimation methods and eventually lead to studying nutrition in past populations. Knowing how fat mass (FM) and fat-free mass (FFM) impact the skeleton would also enhance the understanding of mobility, activity, and locomotion derived from bone architecture. We investigated the relationship between BM and composition, and the architecture of the entire tibial and femoral diaphyses in an adult sample representative of a wide range of variation in age, BM, and composition. Materials and methods Results Body composition was measured directly from 78 whole-body CT scans for which the age, sex, BM, and stature were recorded. The entire diaphyseal thickness, volume, curvature, and cross-sectional geometry parameters of both the femur and tibia were numerically extracted. FM correlates with large portions of the femoral thickness in females only. FFM correlates with the femoral diaphysis in males but not in females. FFM correlates with the tibia architecture in both sexes, while FM is correlated in males exclusively. Discussion BM and body components influence the architecture of the diaphysis of lower limb long bones in sex-specific patterns that are mostly reflected in their thickness and can be recorded, in some cases, for their strength, rigidity, and volume. Our results suggest that (1) long bone diaphyses should be thoroughly studied, as a whole, when possible; and (2) BM and body components should be accounted for when deriving activity, mobility, or locomotion patterns from cortical bone.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10600 - Biological sciences
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
American Journal of Physical Anthropology
ISSN
0002-9483
e-ISSN
—
Svazek periodika
167
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
14
Strana od-do
813-826
Kód UT WoS článku
000450310200010
EID výsledku v databázi Scopus
2-s2.0-85055579218