A Comparison of WorldView-2 and Landsat 8 Images for the Classification of Forests Affected by Bark Beetle Outbreaks Using a Support Vector Machine and a Neural Network: A Case Study in the Sumava Mountains
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11310%2F19%3A10400118" target="_blank" >RIV/00216208:11310/19:10400118 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=ueH.KHnRtV" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=ueH.KHnRtV</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/geosciences9090396" target="_blank" >10.3390/geosciences9090396</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A Comparison of WorldView-2 and Landsat 8 Images for the Classification of Forests Affected by Bark Beetle Outbreaks Using a Support Vector Machine and a Neural Network: A Case Study in the Sumava Mountains
Popis výsledku v původním jazyce
The objective of this paper is to assess WorldView-2 (WV2) and Landsat OLI (L8) images in the detection of bark beetle outbreaks in the Sumava National Park. WV2 and L8 images were used for the classification of forests infected by bark beetle outbreaks using a Support Vector Machine (SVM) and a Neural Network (NN). After evaluating all the available results, the SVM can be considered the best method used in this study. This classifier achieved the highest overall accuracy and Kappa index for both classified images. In the cases of WV2 and L8, total overall accuracies of 86% and 71% and Kappa indices of 0.84 and 0.66 were achieved with SVM, respectively. The NN algorithm using WV2 also produced very promising results, with over 80% overall accuracy and a Kappa index of 0.79. The methods used in this study may be inspirational for testing other types of satellite data (e.g., Sentinel-2) or other classification algorithms such as the Random Forest Classifier.
Název v anglickém jazyce
A Comparison of WorldView-2 and Landsat 8 Images for the Classification of Forests Affected by Bark Beetle Outbreaks Using a Support Vector Machine and a Neural Network: A Case Study in the Sumava Mountains
Popis výsledku anglicky
The objective of this paper is to assess WorldView-2 (WV2) and Landsat OLI (L8) images in the detection of bark beetle outbreaks in the Sumava National Park. WV2 and L8 images were used for the classification of forests infected by bark beetle outbreaks using a Support Vector Machine (SVM) and a Neural Network (NN). After evaluating all the available results, the SVM can be considered the best method used in this study. This classifier achieved the highest overall accuracy and Kappa index for both classified images. In the cases of WV2 and L8, total overall accuracies of 86% and 71% and Kappa indices of 0.84 and 0.66 were achieved with SVM, respectively. The NN algorithm using WV2 also produced very promising results, with over 80% overall accuracy and a Kappa index of 0.79. The methods used in this study may be inspirational for testing other types of satellite data (e.g., Sentinel-2) or other classification algorithms such as the Random Forest Classifier.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10508 - Physical geography
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Geosciences (Switzerland) [online]
ISSN
2076-3263
e-ISSN
—
Svazek periodika
2019 (9)
Číslo periodika v rámci svazku
9
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
24
Strana od-do
396
Kód UT WoS článku
000487634500028
EID výsledku v databázi Scopus
2-s2.0-85073372526