CHANGE DETECTION WORKFLOW FOR MAPPING CHANGES FROM ARABLE LANDS TO PERMANENT GRASSLANDS WITH ADVANCED BOOSTING METHODS
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11310%2F19%3A10400287" target="_blank" >RIV/00216208:11310/19:10400287 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=gg3OIM9zCe" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=gg3OIM9zCe</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.15292/geodetski-vestnik.2019.03.379-394" target="_blank" >10.15292/geodetski-vestnik.2019.03.379-394</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
CHANGE DETECTION WORKFLOW FOR MAPPING CHANGES FROM ARABLE LANDS TO PERMANENT GRASSLANDS WITH ADVANCED BOOSTING METHODS
Popis výsledku v původním jazyce
The necessity of mapping changes in land cover categories based on satellite imageries is a challenging task especially in terms of arable land and grasslands. The phenological phases of arable lands change quickly while grasslands is more stable. It might be hard to capture these changes regarding the spectral overlap between crops in full growth and grass itself. We have introduced a relatively simple processing workflow with good efficiency and accuracy. Our proposed method utilises the combination of a Multivariate Alteration Change Detection Algorithm and an existing boosting method, such as the AdaBoost algorithm with different weak learners and the most recent one - Extreme Gradient Boosting that is actually a relatively new approach in remote sensing. According to the results, the highest overall accuracy is 89.51 %. The proposed process workflow was tested on Landsat data with 30 m spatial resolution, using opensource software: R and GRASS GIS, Orfeo Toolbox library.
Název v anglickém jazyce
CHANGE DETECTION WORKFLOW FOR MAPPING CHANGES FROM ARABLE LANDS TO PERMANENT GRASSLANDS WITH ADVANCED BOOSTING METHODS
Popis výsledku anglicky
The necessity of mapping changes in land cover categories based on satellite imageries is a challenging task especially in terms of arable land and grasslands. The phenological phases of arable lands change quickly while grasslands is more stable. It might be hard to capture these changes regarding the spectral overlap between crops in full growth and grass itself. We have introduced a relatively simple processing workflow with good efficiency and accuracy. Our proposed method utilises the combination of a Multivariate Alteration Change Detection Algorithm and an existing boosting method, such as the AdaBoost algorithm with different weak learners and the most recent one - Extreme Gradient Boosting that is actually a relatively new approach in remote sensing. According to the results, the highest overall accuracy is 89.51 %. The proposed process workflow was tested on Landsat data with 30 m spatial resolution, using opensource software: R and GRASS GIS, Orfeo Toolbox library.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10508 - Physical geography
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Geodetski Vestnik
ISSN
0351-0271
e-ISSN
—
Svazek periodika
63
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
SI - Slovinská republika
Počet stran výsledku
16
Strana od-do
379-394
Kód UT WoS článku
000488291900007
EID výsledku v databázi Scopus
2-s2.0-85073748675