On Multiple Solutions to the Steady Flow of Incompressible Fluids Subject to Do-nothing or Constant Traction Boundary Conditions on Artificial Boundaries
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11310%2F20%3A10406427" target="_blank" >RIV/00216208:11310/20:10406427 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11320/20:10406427
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Eg27N.z1KV" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Eg27N.z1KV</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00021-019-0472-z" target="_blank" >10.1007/s00021-019-0472-z</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On Multiple Solutions to the Steady Flow of Incompressible Fluids Subject to Do-nothing or Constant Traction Boundary Conditions on Artificial Boundaries
Popis výsledku v původním jazyce
The boundary conditions prescribing the constant traction or the so-called do-nothing conditions are frequently taken on artificial boundaries in the numerical simulations of steady flow of incompressible fluids, despite the fact that they do not facilitate a well-posed problem, not allowing to establish the standard energy estimates. In a pursuit to understand better the possible consequences of using these conditions, we present a particular set of examples of flow problems, where we find none or two analytical or numerical solutions. Namely, we consider problems where the flow connects two such artificial boundaries. In the simple case of the isotropic radial flows where both steady and unsteady analytical solutions are derived easily, we demonstrate that while for some (large) boundary data all unsteady solutions blow up in finite time, for other data (including small or trivial) the unsteady flows either converge asymptotically to one of two steady solutions, or blow up in finite time, depending on the initial state. We then document the very same behavior of the numerical solutions for planar flow in a diverging channel. Finally, we provide an illustrative example of two steady numerical solutions to the flow in a three-dimensional bifurcating tube, where the inflow velocity is prescribed at the inlet, while the two outlets are treated by the do-nothing boundary condition.
Název v anglickém jazyce
On Multiple Solutions to the Steady Flow of Incompressible Fluids Subject to Do-nothing or Constant Traction Boundary Conditions on Artificial Boundaries
Popis výsledku anglicky
The boundary conditions prescribing the constant traction or the so-called do-nothing conditions are frequently taken on artificial boundaries in the numerical simulations of steady flow of incompressible fluids, despite the fact that they do not facilitate a well-posed problem, not allowing to establish the standard energy estimates. In a pursuit to understand better the possible consequences of using these conditions, we present a particular set of examples of flow problems, where we find none or two analytical or numerical solutions. Namely, we consider problems where the flow connects two such artificial boundaries. In the simple case of the isotropic radial flows where both steady and unsteady analytical solutions are derived easily, we demonstrate that while for some (large) boundary data all unsteady solutions blow up in finite time, for other data (including small or trivial) the unsteady flows either converge asymptotically to one of two steady solutions, or blow up in finite time, depending on the initial state. We then document the very same behavior of the numerical solutions for planar flow in a diverging channel. Finally, we provide an illustrative example of two steady numerical solutions to the flow in a three-dimensional bifurcating tube, where the inflow velocity is prescribed at the inlet, while the two outlets are treated by the do-nothing boundary condition.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Mathematical Fluid Mechanics
ISSN
1422-6928
e-ISSN
—
Svazek periodika
22
Číslo periodika v rámci svazku
11
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
18
Strana od-do
—
Kód UT WoS článku
000515533600008
EID výsledku v databázi Scopus
2-s2.0-85077028491