Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

A unified lateral soil reaction model for monopiles in soft clay considering various length-to-diameter (L/D) ratios

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11310%2F20%3A10415798" target="_blank" >RIV/00216208:11310/20:10415798 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Rsb3J0McBQ" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Rsb3J0McBQ</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.oceaneng.2020.107492" target="_blank" >10.1016/j.oceaneng.2020.107492</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    A unified lateral soil reaction model for monopiles in soft clay considering various length-to-diameter (L/D) ratios

  • Popis výsledku v původním jazyce

    Large-diameter monopiles are the most commonly used foundation to support offshore wind turbines. Early designs usually adopted pile diameters (D) between 4 and 6 m, which is recently extended to 8 m and will target 10 m in the future. It is increasingly evident that the existing design method (i.e., API&apos;s p-y model) can significantly under-predict the lateral stiffness and capacity of large-diameter monopiles in soft clay, due to ignoring the soil resistances from base shear and base moment which become more pronounces as L/D reduces. In this study, a two-spring approach is proposed, aiming to predict the lateral behaviour of monopiles with varied L/D ratios in a unified manner. In light of the soil flow mechanisms around monopiles, the pure lateral soil resistance above the rotation point (RP) is quantified using a p-y model, while the resistances below the RP including the base shear and base moment are integrated into a moment-rotation spring (characterized by a M-R-theta(R) model) at the RP. It can naturally recover to a p-y model while analyzing flexible piles, where theta(R) = 0 at RP. Formulations of the &apos;p-y + M-R-theta(R)&apos; model (including diameter-related p-y and M-R-theta(R) models, and the depth of the RP) are proposed based on the results of a series of well-calibrated 3D numerical models. The proposed model has satisfactorily reproduced a number of field and centrifuge test results on laterally loaded monopiles with a wide range of L/D ratios (including flexible, semi-rigid and rigid piles), using a unified set of parameters. Compared to the standard p-y model, the adoption of the proposed &apos;p-y + M-R-theta(R)&apos; model is shown to substantially reduce design conservatism.

  • Název v anglickém jazyce

    A unified lateral soil reaction model for monopiles in soft clay considering various length-to-diameter (L/D) ratios

  • Popis výsledku anglicky

    Large-diameter monopiles are the most commonly used foundation to support offshore wind turbines. Early designs usually adopted pile diameters (D) between 4 and 6 m, which is recently extended to 8 m and will target 10 m in the future. It is increasingly evident that the existing design method (i.e., API&apos;s p-y model) can significantly under-predict the lateral stiffness and capacity of large-diameter monopiles in soft clay, due to ignoring the soil resistances from base shear and base moment which become more pronounces as L/D reduces. In this study, a two-spring approach is proposed, aiming to predict the lateral behaviour of monopiles with varied L/D ratios in a unified manner. In light of the soil flow mechanisms around monopiles, the pure lateral soil resistance above the rotation point (RP) is quantified using a p-y model, while the resistances below the RP including the base shear and base moment are integrated into a moment-rotation spring (characterized by a M-R-theta(R) model) at the RP. It can naturally recover to a p-y model while analyzing flexible piles, where theta(R) = 0 at RP. Formulations of the &apos;p-y + M-R-theta(R)&apos; model (including diameter-related p-y and M-R-theta(R) models, and the depth of the RP) are proposed based on the results of a series of well-calibrated 3D numerical models. The proposed model has satisfactorily reproduced a number of field and centrifuge test results on laterally loaded monopiles with a wide range of L/D ratios (including flexible, semi-rigid and rigid piles), using a unified set of parameters. Compared to the standard p-y model, the adoption of the proposed &apos;p-y + M-R-theta(R)&apos; model is shown to substantially reduce design conservatism.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10505 - Geology

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Ocean Engineering

  • ISSN

    0029-8018

  • e-ISSN

  • Svazek periodika

    212

  • Číslo periodika v rámci svazku

    September

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    15

  • Strana od-do

    107492

  • Kód UT WoS článku

    000554925500001

  • EID výsledku v databázi Scopus

    2-s2.0-85087379342