Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

The impact of changing subcanopy radiation on snowmelt in a disturbed coniferous forest

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11310%2F20%3A10416485" target="_blank" >RIV/00216208:11310/20:10416485 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=vj3dqaSIhl" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=vj3dqaSIhl</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/hyp.13936" target="_blank" >10.1002/hyp.13936</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    The impact of changing subcanopy radiation on snowmelt in a disturbed coniferous forest

  • Popis výsledku v původním jazyce

    Understanding the role of forests on snowmelt processes enables better estimates of snow storages at a catchment scale and contributes to a higher accuracy of spring flood forecasting. A coniferous forest modifies the snowpack energy balance by reducing the total amount of solar shortwave radiation (SWR) and enhancing the role of longwave radiation (LWR) emitted by trees. This study focuses on changes in SWR and LWR at three sites with different canopy structure (Bohemian Forest, Czechia), including one site affected by the bark beetle (Ips typographus). Measurements of incoming and outgoing SWR and LWR were performed at all sites equipped with CNR4 Net Radiometers for three cold seasons. In addition to SWR and LWR, sensible and latent heat, and ground heat and energy supplied by liquid precipitation were calculated. The results showed that net SWR at the healthy forest site represented only 7% of the amount at the open site due to the shading effect of trees. In contrast, net LWR represented a positive component of the snowpack energy balance at the healthy forest site and thus contributed the most to snowmelt. However, the modelled snowmelt rates were significantly lower in the forest than in the open area since the higher LWR in the forest did not compensated for the lower SWR. The progressive decay of disturbed forest caused the decrease in mean net LWR from -3.1 W/m2 to -12.9 W/m2 and the increase in mean net SWR from 31.6 W/m2 to 96.2 W/m2 during the study period. These changes caused an increase in modelled snowmelt rates by 50% in the disturbed forest, compared to the healthy forest site, during the study period. Our findings have important implications for runoff from areas affected by land cover changes due to either human activity or climate change.

  • Název v anglickém jazyce

    The impact of changing subcanopy radiation on snowmelt in a disturbed coniferous forest

  • Popis výsledku anglicky

    Understanding the role of forests on snowmelt processes enables better estimates of snow storages at a catchment scale and contributes to a higher accuracy of spring flood forecasting. A coniferous forest modifies the snowpack energy balance by reducing the total amount of solar shortwave radiation (SWR) and enhancing the role of longwave radiation (LWR) emitted by trees. This study focuses on changes in SWR and LWR at three sites with different canopy structure (Bohemian Forest, Czechia), including one site affected by the bark beetle (Ips typographus). Measurements of incoming and outgoing SWR and LWR were performed at all sites equipped with CNR4 Net Radiometers for three cold seasons. In addition to SWR and LWR, sensible and latent heat, and ground heat and energy supplied by liquid precipitation were calculated. The results showed that net SWR at the healthy forest site represented only 7% of the amount at the open site due to the shading effect of trees. In contrast, net LWR represented a positive component of the snowpack energy balance at the healthy forest site and thus contributed the most to snowmelt. However, the modelled snowmelt rates were significantly lower in the forest than in the open area since the higher LWR in the forest did not compensated for the lower SWR. The progressive decay of disturbed forest caused the decrease in mean net LWR from -3.1 W/m2 to -12.9 W/m2 and the increase in mean net SWR from 31.6 W/m2 to 96.2 W/m2 during the study period. These changes caused an increase in modelled snowmelt rates by 50% in the disturbed forest, compared to the healthy forest site, during the study period. Our findings have important implications for runoff from areas affected by land cover changes due to either human activity or climate change.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10508 - Physical geography

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GJ18-06217Y" target="_blank" >GJ18-06217Y: Vliv sezónní sněhové pokrývky na letní minimální průtoky: důsledky klimatických změn na hydrologické sucho</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Hydrological Processes

  • ISSN

    0885-6087

  • e-ISSN

  • Svazek periodika

    34

  • Číslo periodika v rámci svazku

    26

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    17

  • Strana od-do

    5298-5314

  • Kód UT WoS článku

    000579749300001

  • EID výsledku v databázi Scopus

    2-s2.0-85092762740