CO2 thermoreduction to methanol on the MoS2 supported single Co atom catalyst: A DFT study
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11310%2F20%3A10419514" target="_blank" >RIV/00216208:11310/20:10419514 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=DGE3StDEGu" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=DGE3StDEGu</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.apsusc.2020.147047" target="_blank" >10.1016/j.apsusc.2020.147047</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
CO2 thermoreduction to methanol on the MoS2 supported single Co atom catalyst: A DFT study
Popis výsledku v původním jazyce
Single-atom catalysts have attracted wide attention due to the maximum usage of single atom and the great potential to achieve high activity and selectivity for CO2 reduction reaction (CO2RR). CO2RR on the MoS2 supported single cobalt atom (Co/MoS2) monolayer is performed by using the first-principles simulation, and it is found that cobalt atom prefers to dispersedly anchor on MoS2 support as single atom. According to the transition state calculation for the various possible reaction pathways together with the reaction rate constants calculation, the preferable CO2RR pathway is the reverse water gas conversion (RWGS) and CO hydrogenation pathway with the rate-limiting step of CO hydrogenation into formyl (HCO). The entire reaction pathway can be summarized as *CO2 -> *CO -> *CHO -> *CH2O -> *CH2OH and *CH3O -> CH3OH. The electronic structures analysis indicates that Co adatom induced gap states play an important role for CO2 activation and reduction. Therefore, the single cobalt atom supported on MoS2 monolayer is an efficient single atom catalyst for CO2 activation and conversion, and the current work may shed light on the development of single atom catalysts to CO2 reduction.
Název v anglickém jazyce
CO2 thermoreduction to methanol on the MoS2 supported single Co atom catalyst: A DFT study
Popis výsledku anglicky
Single-atom catalysts have attracted wide attention due to the maximum usage of single atom and the great potential to achieve high activity and selectivity for CO2 reduction reaction (CO2RR). CO2RR on the MoS2 supported single cobalt atom (Co/MoS2) monolayer is performed by using the first-principles simulation, and it is found that cobalt atom prefers to dispersedly anchor on MoS2 support as single atom. According to the transition state calculation for the various possible reaction pathways together with the reaction rate constants calculation, the preferable CO2RR pathway is the reverse water gas conversion (RWGS) and CO hydrogenation pathway with the rate-limiting step of CO hydrogenation into formyl (HCO). The entire reaction pathway can be summarized as *CO2 -> *CO -> *CHO -> *CH2O -> *CH2OH and *CH3O -> CH3OH. The electronic structures analysis indicates that Co adatom induced gap states play an important role for CO2 activation and reduction. Therefore, the single cobalt atom supported on MoS2 monolayer is an efficient single atom catalyst for CO2 activation and conversion, and the current work may shed light on the development of single atom catalysts to CO2 reduction.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10403 - Physical chemistry
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Applied Surface Science
ISSN
0169-4332
e-ISSN
—
Svazek periodika
528
Číslo periodika v rámci svazku
October
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
9
Strana od-do
147047
Kód UT WoS článku
000576738500003
EID výsledku v databázi Scopus
2-s2.0-85087280281