CE determination of the thermodynamic pK(a) values and limiting ionic mobilities of 14 low molecular mass UV absorbing ampholytes for accurate characterization of the pH gradient in carrier ampholytes-based IEF and its numeric simulation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11310%2F20%3A10419844" target="_blank" >RIV/00216208:11310/20:10419844 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=v4Ytn2ieNP" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=v4Ytn2ieNP</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/elps.201900381" target="_blank" >10.1002/elps.201900381</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
CE determination of the thermodynamic pK(a) values and limiting ionic mobilities of 14 low molecular mass UV absorbing ampholytes for accurate characterization of the pH gradient in carrier ampholytes-based IEF and its numeric simulation
Popis výsledku v původním jazyce
Fourteen low molecular mass UV absorbing ampholytes containing 1 or 2 weakly acidic and 1 or 2 weakly basic functional groups that best satisfy Rilbe's requirement for being good carrier ampholytes (Delta pK(a) = pKa(monoanion) - pKa(monocation) < 2) were selected from a large group of commercially readily available ampholytes in a computational study using two software packages (ChemSketch and SPARC). Their electrophoretic mobilities were measured in 10 mM ionic strength BGEs covering the 2 < pH < 12 range. Using our Debye-Huckel and Onsager-Fuoss laws-based new software, AnglerFish (freeware, ), the effective mobilities were recalculated to zero ionic strength from which the thermodynamic pK(a) values and limiting ionic mobilities of the ampholytes were directly calculated by Henderson-Hasselbalch equation-type nonlinear regression. The tabulated thermodynamic pK(a) values and limiting ionic mobilities of these ampholytes (pI markers) facilitate both the overall and the narrow-segment characterization of the pH gradients obtained in IEF in order to mitigate the errors of analyte ampholyte pI assignments caused by the usual (but rarely proven) assumption of pH gradient linearity. These thermodynamic pK(a) and limiting mobility values also enable the reality-based numeric simulation of the IEF process using, for example, Simul (freeware, ).
Název v anglickém jazyce
CE determination of the thermodynamic pK(a) values and limiting ionic mobilities of 14 low molecular mass UV absorbing ampholytes for accurate characterization of the pH gradient in carrier ampholytes-based IEF and its numeric simulation
Popis výsledku anglicky
Fourteen low molecular mass UV absorbing ampholytes containing 1 or 2 weakly acidic and 1 or 2 weakly basic functional groups that best satisfy Rilbe's requirement for being good carrier ampholytes (Delta pK(a) = pKa(monoanion) - pKa(monocation) < 2) were selected from a large group of commercially readily available ampholytes in a computational study using two software packages (ChemSketch and SPARC). Their electrophoretic mobilities were measured in 10 mM ionic strength BGEs covering the 2 < pH < 12 range. Using our Debye-Huckel and Onsager-Fuoss laws-based new software, AnglerFish (freeware, ), the effective mobilities were recalculated to zero ionic strength from which the thermodynamic pK(a) values and limiting ionic mobilities of the ampholytes were directly calculated by Henderson-Hasselbalch equation-type nonlinear regression. The tabulated thermodynamic pK(a) values and limiting ionic mobilities of these ampholytes (pI markers) facilitate both the overall and the narrow-segment characterization of the pH gradients obtained in IEF in order to mitigate the errors of analyte ampholyte pI assignments caused by the usual (but rarely proven) assumption of pH gradient linearity. These thermodynamic pK(a) and limiting mobility values also enable the reality-based numeric simulation of the IEF process using, for example, Simul (freeware, ).
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10406 - Analytical chemistry
Návaznosti výsledku
Projekt
<a href="/cs/project/GA18-11776S" target="_blank" >GA18-11776S: Pokročilé teoretické a softwarové nástroje pro elektroforézu</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Electrophoresis
ISSN
0173-0835
e-ISSN
—
Svazek periodika
41
Číslo periodika v rámci svazku
7-8
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
9
Strana od-do
514-522
Kód UT WoS článku
000497737000001
EID výsledku v databázi Scopus
2-s2.0-85075531954