Toward Controlling Disassembly Step within the ADOR Process for the Synthesis of Zeolites
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11310%2F21%3A10430159" target="_blank" >RIV/00216208:11310/21:10430159 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=cVkZzV5BRe" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=cVkZzV5BRe</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acs.chemmater.0c03993" target="_blank" >10.1021/acs.chemmater.0c03993</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Toward Controlling Disassembly Step within the ADOR Process for the Synthesis of Zeolites
Popis výsledku v původním jazyce
The application of the Assembly-Disassembly-Organization-Reassembly (ADOR) protocol to the synthesis of germanosilicate zeolites has become a major milestone in material design by enabling the preparation of previously unknown "isoreticular" zeolites with tunable building units (i.e., -d4r-, - s4r-, -O-) connecting crystalline layers. Two processes operating in the disassembly step, deconstructive "deintercalation" and reconstructive "rearrangement", determine the structure of ADOR-derived zeolites. However, independent management of these key ADOR processes, which would be desirable to regulate the characteristics of the products, has remained elusive thus far. Herein, we report a new method for controlling the primary steps of the ADOR process and present the first example of a "cycled" structural transformation of interlayer units (d4r -> s4r -> d4r) in the germanosilicate UTL zeolite under "slow deintercalation"/"fast rearrangement" conditions. The " slow deintercalation" mode of ADOR enabled us to prepare the previously known OKO, *PCS, IPC-7 zeolites via gradual reduction of interlayer units in UTL (d4r -> d4r/s4r -> s4r -> s4r/-O-), in contrast to conventional rearrangement-driven synthesis (-O-. s4r/-O- -> s4r...). X-ray powder diffraction (XRD), sorption, and solid-state NMR time-resolved studies revealed that the "slow deintercalation/fast rearrangement" modification of ADOR makes it possible to adjust the pore architecture of germanosilicate zeolites toward increasing their micropore size, which has never been achieved before in the classical ADOR mechanism. Therefore, "slow deintercalation" or "slow deintercalation/fast rearrangement" routes provide a tool for controlling the "isoreticular" zeolite structure. Ultimately, the results from this study may facilitate the design of previously predicted but inaccessible members of the ADORable zeolite family.
Název v anglickém jazyce
Toward Controlling Disassembly Step within the ADOR Process for the Synthesis of Zeolites
Popis výsledku anglicky
The application of the Assembly-Disassembly-Organization-Reassembly (ADOR) protocol to the synthesis of germanosilicate zeolites has become a major milestone in material design by enabling the preparation of previously unknown "isoreticular" zeolites with tunable building units (i.e., -d4r-, - s4r-, -O-) connecting crystalline layers. Two processes operating in the disassembly step, deconstructive "deintercalation" and reconstructive "rearrangement", determine the structure of ADOR-derived zeolites. However, independent management of these key ADOR processes, which would be desirable to regulate the characteristics of the products, has remained elusive thus far. Herein, we report a new method for controlling the primary steps of the ADOR process and present the first example of a "cycled" structural transformation of interlayer units (d4r -> s4r -> d4r) in the germanosilicate UTL zeolite under "slow deintercalation"/"fast rearrangement" conditions. The " slow deintercalation" mode of ADOR enabled us to prepare the previously known OKO, *PCS, IPC-7 zeolites via gradual reduction of interlayer units in UTL (d4r -> d4r/s4r -> s4r -> s4r/-O-), in contrast to conventional rearrangement-driven synthesis (-O-. s4r/-O- -> s4r...). X-ray powder diffraction (XRD), sorption, and solid-state NMR time-resolved studies revealed that the "slow deintercalation/fast rearrangement" modification of ADOR makes it possible to adjust the pore architecture of germanosilicate zeolites toward increasing their micropore size, which has never been achieved before in the classical ADOR mechanism. Therefore, "slow deintercalation" or "slow deintercalation/fast rearrangement" routes provide a tool for controlling the "isoreticular" zeolite structure. Ultimately, the results from this study may facilitate the design of previously predicted but inaccessible members of the ADORable zeolite family.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10403 - Physical chemistry
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Chemistry of Materials
ISSN
0897-4756
e-ISSN
—
Svazek periodika
33
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
10
Strana od-do
1228-1237
Kód UT WoS článku
000623043600014
EID výsledku v databázi Scopus
2-s2.0-85100991449