Unravelling Photoinduced Interlayer Spin Transfer Dynamics in Two-Dimensional Nonmagnetic-Ferromagnetic van der Waals Heterostructures
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11310%2F21%3A10436580" target="_blank" >RIV/00216208:11310/21:10436580 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=VeqaBQd6J4" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=VeqaBQd6J4</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acs.nanolett.1c00520" target="_blank" >10.1021/acs.nanolett.1c00520</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Unravelling Photoinduced Interlayer Spin Transfer Dynamics in Two-Dimensional Nonmagnetic-Ferromagnetic van der Waals Heterostructures
Popis výsledku v původním jazyce
Although light is the fastest means to manipulate the interfacial spin injection and magnetic proximity related quantum properties of two-dimensional (2D) magnetic van der Waals (vdW) heterostructures, its potential remains mostly untapped. Here, inspired by the recent discovery of 2D ferromagnets Fe3GeTe2 (FGT), we applied the real-time density functional theory (rt-TDDFT) to study photoinduced interlayer spin transfer dynamics in 2D nonmagnetic-ferromagnetic (NM-FM) vdW heterostructures, including graphene-FGT, silicene-FGT, germanene-FGT, antimonene-FGT and h-BN-FGT interfaces. We observed that laser pulses induce significant large spin injection from FGT to nonmagnetic (NM) layers within a few femtoseconds. In addition, we identified an interfacial atom-mediated spin transfer pathway in heterostructures in which the photoexcited spin of Fe first transfers to intralayered Te atoms and then hops to interlayered NM layers. Interlayer hopping is approximately two times slower than intralayer spin transfer. Our results provide the microscopic understanding for optically control interlayer spin dynamics in 2D magnetic heterostructures.
Název v anglickém jazyce
Unravelling Photoinduced Interlayer Spin Transfer Dynamics in Two-Dimensional Nonmagnetic-Ferromagnetic van der Waals Heterostructures
Popis výsledku anglicky
Although light is the fastest means to manipulate the interfacial spin injection and magnetic proximity related quantum properties of two-dimensional (2D) magnetic van der Waals (vdW) heterostructures, its potential remains mostly untapped. Here, inspired by the recent discovery of 2D ferromagnets Fe3GeTe2 (FGT), we applied the real-time density functional theory (rt-TDDFT) to study photoinduced interlayer spin transfer dynamics in 2D nonmagnetic-ferromagnetic (NM-FM) vdW heterostructures, including graphene-FGT, silicene-FGT, germanene-FGT, antimonene-FGT and h-BN-FGT interfaces. We observed that laser pulses induce significant large spin injection from FGT to nonmagnetic (NM) layers within a few femtoseconds. In addition, we identified an interfacial atom-mediated spin transfer pathway in heterostructures in which the photoexcited spin of Fe first transfers to intralayered Te atoms and then hops to interlayered NM layers. Interlayer hopping is approximately two times slower than intralayer spin transfer. Our results provide the microscopic understanding for optically control interlayer spin dynamics in 2D magnetic heterostructures.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10403 - Physical chemistry
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Nano Letters
ISSN
1530-6984
e-ISSN
—
Svazek periodika
21
Číslo periodika v rámci svazku
7
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
8
Strana od-do
3237-3244
Kód UT WoS článku
000641160500072
EID výsledku v databázi Scopus
2-s2.0-85104276361