beta-Arrestin 1 and 2 similarly influence mu-opioid receptor mobility and distinctly modulate adenylyl cyclase activity
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11310%2F21%3A10437984" target="_blank" >RIV/00216208:11310/21:10437984 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=~hA_EU~8CL" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=~hA_EU~8CL</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.cellsig.2021.110124" target="_blank" >10.1016/j.cellsig.2021.110124</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
beta-Arrestin 1 and 2 similarly influence mu-opioid receptor mobility and distinctly modulate adenylyl cyclase activity
Popis výsledku v původním jazyce
beta-Arrestins are known to play a crucial role in GPCR-mediated transmembrane signaling processes. However, there are still many unanswered questions, especially those concerning the presumed similarities and differences of beta-arrestin isoforms. Here, we examined the roles of beta-arrestin 1 and beta-arrestin 2 at different levels of mu-opioid receptor (MOR)-regulated signaling, including MOR mobility, internalization of MORs, and adenylyl cyclase (AC) activity. For this purpose, naive HEK293 cells or HEK293 cells stably expressing YFP-tagged MOR were transfected with appropriate siRNAs to block in a specific way the expression of beta-arrestin 1 or beta-arrestin 2. We did not find any significant differences in the ability of beta-arrestin isoforms to influence the lateral mobility of MORs in the plasma membrane. Using FRAP and line-scan FCS, we observed that knockdown of both beta-arrestins similarly increased MOR lateral mobility and diminished the ability of DAMGO and endomorphin-2, respectively, to enhance and slow down receptor diffusion kinetics. However, beta-arrestin 1 and beta-arrestin 2 diversely affected the process of agonist-induced MOR endocytosis and exhibited distinct modulatory effects on AC function. Knockdown of beta-arrestin 1, in contrast to beta-arrestin 2, more effectively suppressed forskolin-stimulated AC activity and prevented the ability of activated-MORs to inhibit the enzyme activity. Moreover, we have demonstrated for the first time that beta-arrestin 1, and partially beta-arrestin 2, may somehow interact with AC and that this interaction is strongly supported by the enzyme activation. These data provide new insights into the functioning of beta-arrestin isoforms and their distinct roles in GPCR-mediated signaling.
Název v anglickém jazyce
beta-Arrestin 1 and 2 similarly influence mu-opioid receptor mobility and distinctly modulate adenylyl cyclase activity
Popis výsledku anglicky
beta-Arrestins are known to play a crucial role in GPCR-mediated transmembrane signaling processes. However, there are still many unanswered questions, especially those concerning the presumed similarities and differences of beta-arrestin isoforms. Here, we examined the roles of beta-arrestin 1 and beta-arrestin 2 at different levels of mu-opioid receptor (MOR)-regulated signaling, including MOR mobility, internalization of MORs, and adenylyl cyclase (AC) activity. For this purpose, naive HEK293 cells or HEK293 cells stably expressing YFP-tagged MOR were transfected with appropriate siRNAs to block in a specific way the expression of beta-arrestin 1 or beta-arrestin 2. We did not find any significant differences in the ability of beta-arrestin isoforms to influence the lateral mobility of MORs in the plasma membrane. Using FRAP and line-scan FCS, we observed that knockdown of both beta-arrestins similarly increased MOR lateral mobility and diminished the ability of DAMGO and endomorphin-2, respectively, to enhance and slow down receptor diffusion kinetics. However, beta-arrestin 1 and beta-arrestin 2 diversely affected the process of agonist-induced MOR endocytosis and exhibited distinct modulatory effects on AC function. Knockdown of beta-arrestin 1, in contrast to beta-arrestin 2, more effectively suppressed forskolin-stimulated AC activity and prevented the ability of activated-MORs to inhibit the enzyme activity. Moreover, we have demonstrated for the first time that beta-arrestin 1, and partially beta-arrestin 2, may somehow interact with AC and that this interaction is strongly supported by the enzyme activation. These data provide new insights into the functioning of beta-arrestin isoforms and their distinct roles in GPCR-mediated signaling.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
30105 - Physiology (including cytology)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Cellular Signalling
ISSN
0898-6568
e-ISSN
—
Svazek periodika
87
Číslo periodika v rámci svazku
November
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
10
Strana od-do
110124
Kód UT WoS článku
000702705800008
EID výsledku v databázi Scopus
2-s2.0-85113786021