QSAR based on hybrid optimal descriptors as a tool to predict antibacterial activity against Staphylococcus aureus
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11310%2F22%3A10445176" target="_blank" >RIV/00216208:11310/22:10445176 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=VipYfy5clD" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=VipYfy5clD</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.31083/j.fbl2704112" target="_blank" >10.31083/j.fbl2704112</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
QSAR based on hybrid optimal descriptors as a tool to predict antibacterial activity against Staphylococcus aureus
Popis výsledku v původním jazyce
Background: Staphylococcus aureus bacterial infections are still a serious health care problem. Therefore, the development of new drugs for these infections is a constant requirement. Quantitative structure-activity relationship (QSAR) methods can assist this development. Methods: The study included 151 structurally diverse compounds with antibacterial activity against S. aureus ATCC 25923 (Endpoint 1) or the drug-resistant clinical isolate of S. aureus (Endpoint 2). QSARs based on hybrid optimal descriptors were used. Results: The predictive potential of developed models has been checked with three random splits into training, passive training, calibration, and validation sets. The proposed models give satisfactory predictive models for both endpoints examined. Conclusions: The results of the study show the possibility of SMILES-based QSAR in the evaluation of the antibacterial activity of structurally diverse compounds for both endpoints. Although the developed models give satisfactory predictive models for both endpoints examined, splitting has an apparent influence on the statistical quality of the models.
Název v anglickém jazyce
QSAR based on hybrid optimal descriptors as a tool to predict antibacterial activity against Staphylococcus aureus
Popis výsledku anglicky
Background: Staphylococcus aureus bacterial infections are still a serious health care problem. Therefore, the development of new drugs for these infections is a constant requirement. Quantitative structure-activity relationship (QSAR) methods can assist this development. Methods: The study included 151 structurally diverse compounds with antibacterial activity against S. aureus ATCC 25923 (Endpoint 1) or the drug-resistant clinical isolate of S. aureus (Endpoint 2). QSARs based on hybrid optimal descriptors were used. Results: The predictive potential of developed models has been checked with three random splits into training, passive training, calibration, and validation sets. The proposed models give satisfactory predictive models for both endpoints examined. Conclusions: The results of the study show the possibility of SMILES-based QSAR in the evaluation of the antibacterial activity of structurally diverse compounds for both endpoints. Although the developed models give satisfactory predictive models for both endpoints examined, splitting has an apparent influence on the statistical quality of the models.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10406 - Analytical chemistry
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Frontiers in Bioscience - Landmark
ISSN
2768-6701
e-ISSN
2768-6698
Svazek periodika
27
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
SG - Singapurská republika
Počet stran výsledku
13
Strana od-do
112
Kód UT WoS článku
000797787300008
EID výsledku v databázi Scopus
2-s2.0-85128844118