Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Machine Learning-Based Approach Using Open Data to Estimate PM2.5 over Europe

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11310%2F22%3A10449646" target="_blank" >RIV/00216208:11310/22:10449646 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/68407700:21110/22:00358787

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=ns2OM10eh8" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=ns2OM10eh8</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/rs14143392" target="_blank" >10.3390/rs14143392</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Machine Learning-Based Approach Using Open Data to Estimate PM2.5 over Europe

  • Popis výsledku v původním jazyce

    Air pollution is currently considered one of the most serious problems facing humans. Fine particulate matter with a diameter smaller than 2.5 micrometres (PM2.5) is a very harmful air pollutant that is linked with many diseases. In this study, we created a machine learning-based scheme to estimate PM2.5 using various open data such as satellite remote sensing, meteorological data, and land variables to increase the limited spatial coverage provided by ground-monitors. A space-time extremely randomised trees model was used to estimate PM2.5 concentrations over Europe, this model achieved good results with an out-of-sample cross-validated R-2 of 0.69, RMSE of 5 mu g/m(3), and MAE of 3.3 mu g/m(3). The outcome of this study is a daily full coverage PM2.5 dataset with 1 km spatial resolution for the three-year period of 2018-2020. We found that air quality improved throughout the study period over all countries in Europe. In addition, we compared PM2.5 levels during the COVID-19 lockdown during the months March-June with the average of the previous 4 months and the following 4 months. We found that this lockdown had a positive effect on air quality in most parts of the study area except for the United Kingdom, Ireland, north of France, and south of Italy. This is the first study that depends only on open data and covers the whole of Europe with high spatial and temporal resolutions. The reconstructed dataset will be published under free and open license and can be used in future air quality studies.

  • Název v anglickém jazyce

    Machine Learning-Based Approach Using Open Data to Estimate PM2.5 over Europe

  • Popis výsledku anglicky

    Air pollution is currently considered one of the most serious problems facing humans. Fine particulate matter with a diameter smaller than 2.5 micrometres (PM2.5) is a very harmful air pollutant that is linked with many diseases. In this study, we created a machine learning-based scheme to estimate PM2.5 using various open data such as satellite remote sensing, meteorological data, and land variables to increase the limited spatial coverage provided by ground-monitors. A space-time extremely randomised trees model was used to estimate PM2.5 concentrations over Europe, this model achieved good results with an out-of-sample cross-validated R-2 of 0.69, RMSE of 5 mu g/m(3), and MAE of 3.3 mu g/m(3). The outcome of this study is a daily full coverage PM2.5 dataset with 1 km spatial resolution for the three-year period of 2018-2020. We found that air quality improved throughout the study period over all countries in Europe. In addition, we compared PM2.5 levels during the COVID-19 lockdown during the months March-June with the average of the previous 4 months and the following 4 months. We found that this lockdown had a positive effect on air quality in most parts of the study area except for the United Kingdom, Ireland, north of France, and south of Italy. This is the first study that depends only on open data and covers the whole of Europe with high spatial and temporal resolutions. The reconstructed dataset will be published under free and open license and can be used in future air quality studies.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10508 - Physical geography

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Remote Sensing [online]

  • ISSN

    2072-4292

  • e-ISSN

    2072-4292

  • Svazek periodika

    14

  • Číslo periodika v rámci svazku

    14

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    13

  • Strana od-do

    3392

  • Kód UT WoS článku

    000834389200001

  • EID výsledku v databázi Scopus

    2-s2.0-85137141590