Machine Learning-Based Approach Using Open Data to Estimate PM2.5 over Europe
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11310%2F22%3A10449646" target="_blank" >RIV/00216208:11310/22:10449646 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21110/22:00358787
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=ns2OM10eh8" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=ns2OM10eh8</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/rs14143392" target="_blank" >10.3390/rs14143392</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Machine Learning-Based Approach Using Open Data to Estimate PM2.5 over Europe
Popis výsledku v původním jazyce
Air pollution is currently considered one of the most serious problems facing humans. Fine particulate matter with a diameter smaller than 2.5 micrometres (PM2.5) is a very harmful air pollutant that is linked with many diseases. In this study, we created a machine learning-based scheme to estimate PM2.5 using various open data such as satellite remote sensing, meteorological data, and land variables to increase the limited spatial coverage provided by ground-monitors. A space-time extremely randomised trees model was used to estimate PM2.5 concentrations over Europe, this model achieved good results with an out-of-sample cross-validated R-2 of 0.69, RMSE of 5 mu g/m(3), and MAE of 3.3 mu g/m(3). The outcome of this study is a daily full coverage PM2.5 dataset with 1 km spatial resolution for the three-year period of 2018-2020. We found that air quality improved throughout the study period over all countries in Europe. In addition, we compared PM2.5 levels during the COVID-19 lockdown during the months March-June with the average of the previous 4 months and the following 4 months. We found that this lockdown had a positive effect on air quality in most parts of the study area except for the United Kingdom, Ireland, north of France, and south of Italy. This is the first study that depends only on open data and covers the whole of Europe with high spatial and temporal resolutions. The reconstructed dataset will be published under free and open license and can be used in future air quality studies.
Název v anglickém jazyce
Machine Learning-Based Approach Using Open Data to Estimate PM2.5 over Europe
Popis výsledku anglicky
Air pollution is currently considered one of the most serious problems facing humans. Fine particulate matter with a diameter smaller than 2.5 micrometres (PM2.5) is a very harmful air pollutant that is linked with many diseases. In this study, we created a machine learning-based scheme to estimate PM2.5 using various open data such as satellite remote sensing, meteorological data, and land variables to increase the limited spatial coverage provided by ground-monitors. A space-time extremely randomised trees model was used to estimate PM2.5 concentrations over Europe, this model achieved good results with an out-of-sample cross-validated R-2 of 0.69, RMSE of 5 mu g/m(3), and MAE of 3.3 mu g/m(3). The outcome of this study is a daily full coverage PM2.5 dataset with 1 km spatial resolution for the three-year period of 2018-2020. We found that air quality improved throughout the study period over all countries in Europe. In addition, we compared PM2.5 levels during the COVID-19 lockdown during the months March-June with the average of the previous 4 months and the following 4 months. We found that this lockdown had a positive effect on air quality in most parts of the study area except for the United Kingdom, Ireland, north of France, and south of Italy. This is the first study that depends only on open data and covers the whole of Europe with high spatial and temporal resolutions. The reconstructed dataset will be published under free and open license and can be used in future air quality studies.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10508 - Physical geography
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Remote Sensing [online]
ISSN
2072-4292
e-ISSN
2072-4292
Svazek periodika
14
Číslo periodika v rámci svazku
14
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
13
Strana od-do
3392
Kód UT WoS článku
000834389200001
EID výsledku v databázi Scopus
2-s2.0-85137141590