Accessing Insurance Flood Losses Using a Catastrophe Model and Climate Change Scenarios
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11310%2F22%3A10454804" target="_blank" >RIV/00216208:11310/22:10454804 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21110/22:00358423
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=p5Bu2xqPhV" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=p5Bu2xqPhV</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/cli10050067" target="_blank" >10.3390/cli10050067</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Accessing Insurance Flood Losses Using a Catastrophe Model and Climate Change Scenarios
Popis výsledku v původním jazyce
Impact Forecasting has developed a catastrophe flood model for Czechia to estimate insurance losses. The model is built on a dataset of 12,066 years of daily rainfall and temperature data for the European area, representing the current climate (LAERTES-EU). This dataset was used as input to the rainfall-runoff model, resulting in a series of daily river channel discharges. Using analyses of global and regional climate models dealing with the impacts of climate change, this dataset was adjusted for the individual RCP climate scenarios in Europe. The river channel discharges were then re-derived using the already calibrated rainfall-runoff models. Based on the changed discharges, alternative versions of the standard catastrophe flood model for the Czechia were created for the various climate scenarios. In outputs, differences in severity, intensity, and number of events might be observed, as well as the size of storms. The effect on the losses might be investigated by probable maximum losses (PML) curves and average annual loss (AAL) values. For return period 1 in 5 years for the worst-case scenario, the differences can be up to +125 percent increase in insurance losses, while for the return period 1 in 100 years it is a -40 percent decrease. There is no significant effect of adaptation measures for the return period 1 in 100 years, but there is a -20 percent decrease in the return period 1 in 5 years.
Název v anglickém jazyce
Accessing Insurance Flood Losses Using a Catastrophe Model and Climate Change Scenarios
Popis výsledku anglicky
Impact Forecasting has developed a catastrophe flood model for Czechia to estimate insurance losses. The model is built on a dataset of 12,066 years of daily rainfall and temperature data for the European area, representing the current climate (LAERTES-EU). This dataset was used as input to the rainfall-runoff model, resulting in a series of daily river channel discharges. Using analyses of global and regional climate models dealing with the impacts of climate change, this dataset was adjusted for the individual RCP climate scenarios in Europe. The river channel discharges were then re-derived using the already calibrated rainfall-runoff models. Based on the changed discharges, alternative versions of the standard catastrophe flood model for the Czechia were created for the various climate scenarios. In outputs, differences in severity, intensity, and number of events might be observed, as well as the size of storms. The effect on the losses might be investigated by probable maximum losses (PML) curves and average annual loss (AAL) values. For return period 1 in 5 years for the worst-case scenario, the differences can be up to +125 percent increase in insurance losses, while for the return period 1 in 100 years it is a -40 percent decrease. There is no significant effect of adaptation measures for the return period 1 in 100 years, but there is a -20 percent decrease in the return period 1 in 5 years.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10508 - Physical geography
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Climate [online]
ISSN
2225-1154
e-ISSN
—
Svazek periodika
10
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
21
Strana od-do
67
Kód UT WoS článku
000801692000001
EID výsledku v databázi Scopus
2-s2.0-85130409624