Characterizing large rockfalls using their seismic signature: A case study of Hongya rockfall
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11310%2F23%3A10468604" target="_blank" >RIV/00216208:11310/23:10468604 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=SJFdvaVbHG" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=SJFdvaVbHG</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.enggeo.2023.107222" target="_blank" >10.1016/j.enggeo.2023.107222</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Characterizing large rockfalls using their seismic signature: A case study of Hongya rockfall
Popis výsledku v původním jazyce
A preliminary, yet timely characterization of rockfall hazards is essential for effective emergency response and mitigation measures. Such characterization is, however, particularly challenging for events occurring on highmountain slopes in remote locations, for which precursory information remains often undetected. Large rockfalls are known to produce seismic signatures that, if properly interpreted, provide key information on the magnitude and destructiveness of the event. To achieve this, we establish a seismic signal-based assessment scheme and demonstrate its capability by taking a large event - the 5 April 2021 Hongya rockfall (Sichuan, China) - as a case study. First, we show how a rockfall can be distinguished from an earthquake and a rockslide by analyzing its seismic signatures. Then, we demonstrate how the kurtosis-based method can be used to rapidly detect the initiation of a rockfall and determine the seismic wave velocity accordingly, as well as how the arrivaltime-based location method can be used to locate the event. The rockfall volume can be estimated from the magnitude of radiated seismic energy. Furthermore, we characterize the different phases in seismograms and link them to the typical stages of rockfall, i.e., precursory small rockfalls, impact and fragmentation, sliding and entrainment, and gravity deposition stages. Finally, a discussion and suggestions are provided for further improving the robustness of the assessment scheme. Our results show that the seismic signal-based scheme presented in this study is suitable for characterizing large rockfalls and has the potential for rapid and effective emergency management.
Název v anglickém jazyce
Characterizing large rockfalls using their seismic signature: A case study of Hongya rockfall
Popis výsledku anglicky
A preliminary, yet timely characterization of rockfall hazards is essential for effective emergency response and mitigation measures. Such characterization is, however, particularly challenging for events occurring on highmountain slopes in remote locations, for which precursory information remains often undetected. Large rockfalls are known to produce seismic signatures that, if properly interpreted, provide key information on the magnitude and destructiveness of the event. To achieve this, we establish a seismic signal-based assessment scheme and demonstrate its capability by taking a large event - the 5 April 2021 Hongya rockfall (Sichuan, China) - as a case study. First, we show how a rockfall can be distinguished from an earthquake and a rockslide by analyzing its seismic signatures. Then, we demonstrate how the kurtosis-based method can be used to rapidly detect the initiation of a rockfall and determine the seismic wave velocity accordingly, as well as how the arrivaltime-based location method can be used to locate the event. The rockfall volume can be estimated from the magnitude of radiated seismic energy. Furthermore, we characterize the different phases in seismograms and link them to the typical stages of rockfall, i.e., precursory small rockfalls, impact and fragmentation, sliding and entrainment, and gravity deposition stages. Finally, a discussion and suggestions are provided for further improving the robustness of the assessment scheme. Our results show that the seismic signal-based scheme presented in this study is suitable for characterizing large rockfalls and has the potential for rapid and effective emergency management.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10505 - Geology
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Engineering Geology
ISSN
0013-7952
e-ISSN
1872-6917
Svazek periodika
323
Číslo periodika v rámci svazku
September
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
16
Strana od-do
107222
Kód UT WoS článku
001028092500001
EID výsledku v databázi Scopus
2-s2.0-85162809841