Evolution of the theoretical description of the isoelectric focusing experiment: II. An open system isoelectric focusing experiment is a transient, bidirectional isotachophoretic experiment
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11310%2F23%3A10471109" target="_blank" >RIV/00216208:11310/23:10471109 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=QDTfgKvWXJ" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=QDTfgKvWXJ</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/elps.202200238" target="_blank" >10.1002/elps.202200238</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Evolution of the theoretical description of the isoelectric focusing experiment: II. An open system isoelectric focusing experiment is a transient, bidirectional isotachophoretic experiment
Popis výsledku v původním jazyce
The carrier ampholytes-based (CA-based) isoelectric focusing (IEF) experiment evolved from Svensson's closed system IEF (constant spatial current density, absence of convective mixing, counter-balancing electrophoretic and diffusive fluxes yielding a steady state pH gradient) to the contemporary open system IEF (absence of convective mixing, large cross-sectional area electrode vessels, lack of counter-balancing electrophoretic- and diffusive fluxes leading to transient pH gradients). Open system IEF currently is described by a two-stage model: In the first stage, a rapid IEF process forms the pH gradient which, in the second stage, is slowly degraded by isotachophoretic processes that move the most acidic and most basic CAs into the electrode vessels. An analysis of the effective mobilities and the effective mobility to conductivity ratios of the anolyte, catholyte, and the CAs indicates that in open system IEF experiments a single process, transient bidirectional isotachophoresis (tbdITP) operates from the moment current is turned on until it is turned off. In tbdITP, the anolyte and catholyte provide the leading ions and the pI 7 CA or the reactive boundary of the counter-migrating H3O(+) and OH(-) ions serves as the shared terminator. The outcome of the tbdITP process is determined by the ionic mobilities, pK(a) values, and loaded amounts of all ionic and ionizable components: It is constrained by both the transmitted amount of charge and the migration space available for the leading ions. tbdITP and the resulting pH gradient can never reach steady state with respect to the spatial coordinate of the separation channel.
Název v anglickém jazyce
Evolution of the theoretical description of the isoelectric focusing experiment: II. An open system isoelectric focusing experiment is a transient, bidirectional isotachophoretic experiment
Popis výsledku anglicky
The carrier ampholytes-based (CA-based) isoelectric focusing (IEF) experiment evolved from Svensson's closed system IEF (constant spatial current density, absence of convective mixing, counter-balancing electrophoretic and diffusive fluxes yielding a steady state pH gradient) to the contemporary open system IEF (absence of convective mixing, large cross-sectional area electrode vessels, lack of counter-balancing electrophoretic- and diffusive fluxes leading to transient pH gradients). Open system IEF currently is described by a two-stage model: In the first stage, a rapid IEF process forms the pH gradient which, in the second stage, is slowly degraded by isotachophoretic processes that move the most acidic and most basic CAs into the electrode vessels. An analysis of the effective mobilities and the effective mobility to conductivity ratios of the anolyte, catholyte, and the CAs indicates that in open system IEF experiments a single process, transient bidirectional isotachophoresis (tbdITP) operates from the moment current is turned on until it is turned off. In tbdITP, the anolyte and catholyte provide the leading ions and the pI 7 CA or the reactive boundary of the counter-migrating H3O(+) and OH(-) ions serves as the shared terminator. The outcome of the tbdITP process is determined by the ionic mobilities, pK(a) values, and loaded amounts of all ionic and ionizable components: It is constrained by both the transmitted amount of charge and the migration space available for the leading ions. tbdITP and the resulting pH gradient can never reach steady state with respect to the spatial coordinate of the separation channel.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10403 - Physical chemistry
Návaznosti výsledku
Projekt
<a href="/cs/project/GA18-11776S" target="_blank" >GA18-11776S: Pokročilé teoretické a softwarové nástroje pro elektroforézu</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Electrophoresis
ISSN
0173-0835
e-ISSN
1522-2683
Svazek periodika
44
Číslo periodika v rámci svazku
7-8
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
14
Strana od-do
675-688
Kód UT WoS článku
000919885000001
EID výsledku v databázi Scopus
2-s2.0-85146475914