Making the Genotypic Variation Visible: Hyperspectral Phenotyping in Scots Pine Seedlings
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11310%2F23%3A10475602" target="_blank" >RIV/00216208:11310/23:10475602 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=xcX9Sk.JUQ" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=xcX9Sk.JUQ</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.34133/plantphenomics.0111" target="_blank" >10.34133/plantphenomics.0111</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Making the Genotypic Variation Visible: Hyperspectral Phenotyping in Scots Pine Seedlings
Popis výsledku v původním jazyce
Hyperspectral reflectance contains valuable information about leaf functional traits, which can indicate a plant's physiological status. Therefore, using hyperspectral reflectance for high-throughput phenotyping of foliar traits could be a powerful tool for tree breeders and nursery practitioners to distinguish and select seedlings with desired adaptation potential to local environments. We evaluated the use of 2 nondestructive methods (i.e., leaf and proximal/canopy) measuring hyperspectral reflectance in the 350-to 2,500-nm range for phenotyping on 1,788 individual Scots pine seedlings belonging to lowland and upland ecotypes of 3 different local populations from the Czech Republic. Leaf-level measurements were collected using a spectroradiometer and a contact probe with an internal light source to measure the biconical reflectance factor of a sample of needles placed on a black background in the contact probe field of view. The proximal canopy measurements were collected under natural solar light, using the same spectroradiometer with fiber optical cable to collect data on individual seedlings' hemispherical conical reflectance factor. The latter method was highly susceptible to changes in incoming radiation. Both spectral datasets showed statistically significant differences among Scots pine populations in the whole spectral range. Moreover, using random forest and support vector machine learning algorithms, the proximal data obtained from the top of the seedlings offered up to 83% accuracy in predicting 3 different Scots pine populations. We conclude that both approaches are viable for hyperspectral phenotyping to disentangle the phenotypic and the underlying genetic variation within Scots pine seedlings.
Název v anglickém jazyce
Making the Genotypic Variation Visible: Hyperspectral Phenotyping in Scots Pine Seedlings
Popis výsledku anglicky
Hyperspectral reflectance contains valuable information about leaf functional traits, which can indicate a plant's physiological status. Therefore, using hyperspectral reflectance for high-throughput phenotyping of foliar traits could be a powerful tool for tree breeders and nursery practitioners to distinguish and select seedlings with desired adaptation potential to local environments. We evaluated the use of 2 nondestructive methods (i.e., leaf and proximal/canopy) measuring hyperspectral reflectance in the 350-to 2,500-nm range for phenotyping on 1,788 individual Scots pine seedlings belonging to lowland and upland ecotypes of 3 different local populations from the Czech Republic. Leaf-level measurements were collected using a spectroradiometer and a contact probe with an internal light source to measure the biconical reflectance factor of a sample of needles placed on a black background in the contact probe field of view. The proximal canopy measurements were collected under natural solar light, using the same spectroradiometer with fiber optical cable to collect data on individual seedlings' hemispherical conical reflectance factor. The latter method was highly susceptible to changes in incoming radiation. Both spectral datasets showed statistically significant differences among Scots pine populations in the whole spectral range. Moreover, using random forest and support vector machine learning algorithms, the proximal data obtained from the top of the seedlings offered up to 83% accuracy in predicting 3 different Scots pine populations. We conclude that both approaches are viable for hyperspectral phenotyping to disentangle the phenotypic and the underlying genetic variation within Scots pine seedlings.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10611 - Plant sciences, botany
Návaznosti výsledku
Projekt
<a href="/cs/project/LTAUSA19113" target="_blank" >LTAUSA19113: Využití genetické variability hyperspektrální odrazivosti ekotypů borovice lesní pro selekci jedinců odolných vůči suchu</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Plant Phenomics
ISSN
2097-0374
e-ISSN
2643-6515
Svazek periodika
5
Číslo periodika v rámci svazku
November
Stát vydavatele periodika
CN - Čínská lidová republika
Počet stran výsledku
16
Strana od-do
0111
Kód UT WoS článku
001123111800001
EID výsledku v databázi Scopus
2-s2.0-85180134255