The Holocene silicon biogeochemistry of Yellowstone Lake, USA
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11310%2F23%3A10475685" target="_blank" >RIV/00216208:11310/23:10475685 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=I2jyFtG6Ke" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=I2jyFtG6Ke</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.quascirev.2023.108419" target="_blank" >10.1016/j.quascirev.2023.108419</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The Holocene silicon biogeochemistry of Yellowstone Lake, USA
Popis výsledku v původním jazyce
Silicon (Si) is an essential macronutrient for diatoms, an important component of lacustrine primary productivity that represents a link between the carbon and silicon cycles. Reconstructions of lake silicon cycling thus provide an underexploited window onto lake and catchment biogeochemistry. Silicon isotope geochemistry has potential to provide these reconstructions, given the competing source and process controls can be deconvolved. The silica rich volcanic and hydrothermal systems in Yellowstone National Park are a great source of dissolved silicon into Yellowstone Lake, a system with high silicon, and thus carbon, export rates and the formation of diatom-rich sediment. Yellowstone Lake sediments should be an archive of past silicon biogeochemistry, although the effect of sublacustrine hydrothermal activity or hydrothermal explosion events is unclear.Here, we analysed lake water, tributaries, and hydrothermal vent fluids from Yellowstone Lake for their dissolved Si concentrations, isotope composition (????(30)Si) and Ge/Si ratios to evaluate the sources of variability in the lake's Si cycle. Bulk elemental composition and biogenic SiO2 (bSiO2) content, together with ????(30)Si and Ge/Si ratios from a single diatom species, Stephanodiscus yellowstonensis, were analysed in two sediment cores spanning the last 9880 cal. yr BP. We investigate these datasets to identify long term Holocene changes in hydrothermal activity and effects of large and short-term events i.e., hydrothermal and a volcanic eruption.Combinations of bSiO2, ????(30)Si and Ge/Si with XRF and lithology data revealed that Yellowstone Lake has a resilient biogeochemical system: hydrothermal explosions are visible in the lithology but have no identifiable impact on bSiO2 accumulation or on the ????(30)Si signature. Both cores show similarities that suggest a stable and homogeneous dSi source across the entire lake. A narrow range of ????(30)Si and Ge/Si values suggests that the productive layer of the lake was well mixed and biogeochemically stable, with consistently high hydrothermal inputs of Si throughout the Holocene to buffer against the disturbance events. Variation in bSiO2 concentration through time is weakly correlated with an increase towards younger sediment in the ????(30)Si fossil diatom record in both cores. This increase mirrors that seen in ocean records, and follows changes known in summer insolation, summer temperatures and lake water-column mixing since the deglaciation. This suggests that climate forcing, and soil formation ultimately govern the silicon isotope record, which we suggest is via a combination of changes in weathering stoichiometry, diatom production, and relative proportion of dSi sources.
Název v anglickém jazyce
The Holocene silicon biogeochemistry of Yellowstone Lake, USA
Popis výsledku anglicky
Silicon (Si) is an essential macronutrient for diatoms, an important component of lacustrine primary productivity that represents a link between the carbon and silicon cycles. Reconstructions of lake silicon cycling thus provide an underexploited window onto lake and catchment biogeochemistry. Silicon isotope geochemistry has potential to provide these reconstructions, given the competing source and process controls can be deconvolved. The silica rich volcanic and hydrothermal systems in Yellowstone National Park are a great source of dissolved silicon into Yellowstone Lake, a system with high silicon, and thus carbon, export rates and the formation of diatom-rich sediment. Yellowstone Lake sediments should be an archive of past silicon biogeochemistry, although the effect of sublacustrine hydrothermal activity or hydrothermal explosion events is unclear.Here, we analysed lake water, tributaries, and hydrothermal vent fluids from Yellowstone Lake for their dissolved Si concentrations, isotope composition (????(30)Si) and Ge/Si ratios to evaluate the sources of variability in the lake's Si cycle. Bulk elemental composition and biogenic SiO2 (bSiO2) content, together with ????(30)Si and Ge/Si ratios from a single diatom species, Stephanodiscus yellowstonensis, were analysed in two sediment cores spanning the last 9880 cal. yr BP. We investigate these datasets to identify long term Holocene changes in hydrothermal activity and effects of large and short-term events i.e., hydrothermal and a volcanic eruption.Combinations of bSiO2, ????(30)Si and Ge/Si with XRF and lithology data revealed that Yellowstone Lake has a resilient biogeochemical system: hydrothermal explosions are visible in the lithology but have no identifiable impact on bSiO2 accumulation or on the ????(30)Si signature. Both cores show similarities that suggest a stable and homogeneous dSi source across the entire lake. A narrow range of ????(30)Si and Ge/Si values suggests that the productive layer of the lake was well mixed and biogeochemically stable, with consistently high hydrothermal inputs of Si throughout the Holocene to buffer against the disturbance events. Variation in bSiO2 concentration through time is weakly correlated with an increase towards younger sediment in the ????(30)Si fossil diatom record in both cores. This increase mirrors that seen in ocean records, and follows changes known in summer insolation, summer temperatures and lake water-column mixing since the deglaciation. This suggests that climate forcing, and soil formation ultimately govern the silicon isotope record, which we suggest is via a combination of changes in weathering stoichiometry, diatom production, and relative proportion of dSi sources.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10505 - Geology
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Quarternary Science Reviews
ISSN
0277-3791
e-ISSN
1873-457X
Svazek periodika
322
Číslo periodika v rámci svazku
December
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
15
Strana od-do
108419
Kód UT WoS článku
001121820500001
EID výsledku v databázi Scopus
2-s2.0-85177564392