Implementation of deep neural networks and statistical methods to predict the resilient modulus of soils
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11310%2F23%3A10476937" target="_blank" >RIV/00216208:11310/23:10476937 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=nZTJOGcSSw" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=nZTJOGcSSw</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1080/10298436.2023.2257852" target="_blank" >10.1080/10298436.2023.2257852</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Implementation of deep neural networks and statistical methods to predict the resilient modulus of soils
Popis výsledku v původním jazyce
The Resilient Modulus (Mr) is perhaps the most relevant and widely used parameter to characterise the soil behaviour under repetitive loading for pavement applications. Accordingly, it is a crucial parameter controlling the mechanistic-empirical pavement design. Nonetheless, determining the Mr by laboratory tests is not always possible due to the high consumption of time and financial resources. Thus, developing new indirect approaches for estimating the MR is necessary. Precisely, this article investigates the application of Deep Neural Networks (DNNs) and statistical methods to predict the Mr of soils. For that purpose, the Long-Term Pavement Performance (LTPP) database was implemented. It includes 64 701 datasets resulting from coarse-grained and fine-grained soil samples considering a wide range of grain size distribution and subjected to different stress levels. The input parameters were the bulk stress, octahedral shear stress, and the percentage of soil particles passing through the different sieves (3", 2", 3/2", 1", 3/4", 1/2", 3/8", No. 4, No. 10, No. 40, No. 80, and No. 200) and the output was the Mr. The results suggest that while conventional mathematical models are unable to predict the influence of the grain size distribution and stress level on the Mr, the proposed DNNs were able to reproduce very accurate predictions. Notably, the proposed computational models have been uploaded to a GitHub repository and have become a valuable tool for forecasting the Mr when experimental measurements are not feasible.
Název v anglickém jazyce
Implementation of deep neural networks and statistical methods to predict the resilient modulus of soils
Popis výsledku anglicky
The Resilient Modulus (Mr) is perhaps the most relevant and widely used parameter to characterise the soil behaviour under repetitive loading for pavement applications. Accordingly, it is a crucial parameter controlling the mechanistic-empirical pavement design. Nonetheless, determining the Mr by laboratory tests is not always possible due to the high consumption of time and financial resources. Thus, developing new indirect approaches for estimating the MR is necessary. Precisely, this article investigates the application of Deep Neural Networks (DNNs) and statistical methods to predict the Mr of soils. For that purpose, the Long-Term Pavement Performance (LTPP) database was implemented. It includes 64 701 datasets resulting from coarse-grained and fine-grained soil samples considering a wide range of grain size distribution and subjected to different stress levels. The input parameters were the bulk stress, octahedral shear stress, and the percentage of soil particles passing through the different sieves (3", 2", 3/2", 1", 3/4", 1/2", 3/8", No. 4, No. 10, No. 40, No. 80, and No. 200) and the output was the Mr. The results suggest that while conventional mathematical models are unable to predict the influence of the grain size distribution and stress level on the Mr, the proposed DNNs were able to reproduce very accurate predictions. Notably, the proposed computational models have been uploaded to a GitHub repository and have become a valuable tool for forecasting the Mr when experimental measurements are not feasible.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10505 - Geology
Návaznosti výsledku
Projekt
<a href="/cs/project/GC21-35764J" target="_blank" >GC21-35764J: Experimentální a numerické studium sdruženého termo-hydro-mechanického chování jílu s důrazem na cyklické zatěžování</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Pavement Engineering
ISSN
1029-8436
e-ISSN
1477-268X
Svazek periodika
24
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
19
Strana od-do
2257852
Kód UT WoS článku
001068220900001
EID výsledku v databázi Scopus
2-s2.0-85171858404