Mapping changes of grassland to arable land using automatic machine learning of stacked ensembles and H2O library
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11310%2F24%3A10477520" target="_blank" >RIV/00216208:11310/24:10477520 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Hr8sDtPvSg" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=Hr8sDtPvSg</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1080/22797254.2023.2294127" target="_blank" >10.1080/22797254.2023.2294127</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Mapping changes of grassland to arable land using automatic machine learning of stacked ensembles and H2O library
Popis výsledku v původním jazyce
Permanent grasslands play a very important role in the landscape. The loss of permanent grasslands and their subsequent conversion into arable land create erosion-prone agricultural areas in the landscape and have a negative impact on the biodiversity. From this point of view, there is a need for the accurate and effective monitoring of changes in the agricultural landscape along with an assessment of the influence of the agricultural policies on the landscape. Sentinel-2 from the Copernicus programme has improved options for the implementation of remote sensing data into the monitoring of agricultural land. The aim of this study was to evaluate the potential of H2O library and within implemented Automachine learning function (AutoML) and its stacked ensembles for mapping changes from grasslands to arable lands. All results show high overall accuracy from 93.5% to 96.6% and high values of area under the ROC curve (0.94-0.98). Stacked ensembles appear to be the most accurate machine learning models for mapping changes from grasslands to arable lands. The importance of several biological predictors has been tested (FAPAR, FCOVER, LAI, NDVI, etc.) with the help of a heatmap that is part of AutoML function of H2O library.
Název v anglickém jazyce
Mapping changes of grassland to arable land using automatic machine learning of stacked ensembles and H2O library
Popis výsledku anglicky
Permanent grasslands play a very important role in the landscape. The loss of permanent grasslands and their subsequent conversion into arable land create erosion-prone agricultural areas in the landscape and have a negative impact on the biodiversity. From this point of view, there is a need for the accurate and effective monitoring of changes in the agricultural landscape along with an assessment of the influence of the agricultural policies on the landscape. Sentinel-2 from the Copernicus programme has improved options for the implementation of remote sensing data into the monitoring of agricultural land. The aim of this study was to evaluate the potential of H2O library and within implemented Automachine learning function (AutoML) and its stacked ensembles for mapping changes from grasslands to arable lands. All results show high overall accuracy from 93.5% to 96.6% and high values of area under the ROC curve (0.94-0.98). Stacked ensembles appear to be the most accurate machine learning models for mapping changes from grasslands to arable lands. The importance of several biological predictors has been tested (FAPAR, FCOVER, LAI, NDVI, etc.) with the help of a heatmap that is part of AutoML function of H2O library.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10508 - Physical geography
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Europen Journal of Remote Sensing
ISSN
2279-7254
e-ISSN
2279-7254
Svazek periodika
57
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
IT - Italská republika
Počet stran výsledku
18
Strana od-do
2294127
Kód UT WoS článku
001129019100001
EID výsledku v databázi Scopus
2-s2.0-85180699149