The role of defects in high-silica zeolite hydrolysis and framework healing
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11310%2F24%3A10481978" target="_blank" >RIV/00216208:11310/24:10481978 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=vepGupeCeh" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=vepGupeCeh</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.micromeso.2024.113219" target="_blank" >10.1016/j.micromeso.2024.113219</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The role of defects in high-silica zeolite hydrolysis and framework healing
Popis výsledku v původním jazyce
The stability of high silica zeolites under standard laboratory and mild steaming conditions is understood to be due to the lack of hydrophilic Al-O-Si moieties, which can be targeted by water via hydrolysis reactions with relatively low barriers. However, in hydrophobic high-silica and siliceous frameworks, the specific interactions between water and the internal framework sites are incompletely understood. In particular, the behaviour of common internal defects, including partial hydrolysis species and silanol nests are not established, despite their expected role in accelerating the decomposition of the framework. In this work, we utilise machine learning potentials combined with density functional calculations to rigorously sample the hydrolysis processes in siliceous zeolites with topologies CHA and MFI under low water conditions and quantify the effect of defects. Internal silanol defect sites are found to accelerate zeolite decomposition primarily by bypassing the initial, highbarrier hydrolysis step. Subsequent steps proceed with lower reaction barriers. However, all reaction steps are found to be highly activated, and unlikely to occur rapidly at room temperature under conditions of low internal water concentration. Exchange-healing routes, which reverse hydrolysis while incorporating oxygen from water molecules are found to be competitive along the entire hydrolysis pathway in CHA, providing an additional source of stabilization against hydrolytic decomposition.
Název v anglickém jazyce
The role of defects in high-silica zeolite hydrolysis and framework healing
Popis výsledku anglicky
The stability of high silica zeolites under standard laboratory and mild steaming conditions is understood to be due to the lack of hydrophilic Al-O-Si moieties, which can be targeted by water via hydrolysis reactions with relatively low barriers. However, in hydrophobic high-silica and siliceous frameworks, the specific interactions between water and the internal framework sites are incompletely understood. In particular, the behaviour of common internal defects, including partial hydrolysis species and silanol nests are not established, despite their expected role in accelerating the decomposition of the framework. In this work, we utilise machine learning potentials combined with density functional calculations to rigorously sample the hydrolysis processes in siliceous zeolites with topologies CHA and MFI under low water conditions and quantify the effect of defects. Internal silanol defect sites are found to accelerate zeolite decomposition primarily by bypassing the initial, highbarrier hydrolysis step. Subsequent steps proceed with lower reaction barriers. However, all reaction steps are found to be highly activated, and unlikely to occur rapidly at room temperature under conditions of low internal water concentration. Exchange-healing routes, which reverse hydrolysis while incorporating oxygen from water molecules are found to be competitive along the entire hydrolysis pathway in CHA, providing an additional source of stabilization against hydrolytic decomposition.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10403 - Physical chemistry
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Microporous and Mesoporous Materials
ISSN
1387-1811
e-ISSN
1873-3093
Svazek periodika
377
Číslo periodika v rámci svazku
September
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
7
Strana od-do
113219
Kód UT WoS článku
001259192300001
EID výsledku v databázi Scopus
2-s2.0-85196172321