Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

The role of defects in high-silica zeolite hydrolysis and framework healing

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11310%2F24%3A10481978" target="_blank" >RIV/00216208:11310/24:10481978 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=vepGupeCeh" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=vepGupeCeh</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.micromeso.2024.113219" target="_blank" >10.1016/j.micromeso.2024.113219</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    The role of defects in high-silica zeolite hydrolysis and framework healing

  • Popis výsledku v původním jazyce

    The stability of high silica zeolites under standard laboratory and mild steaming conditions is understood to be due to the lack of hydrophilic Al-O-Si moieties, which can be targeted by water via hydrolysis reactions with relatively low barriers. However, in hydrophobic high-silica and siliceous frameworks, the specific interactions between water and the internal framework sites are incompletely understood. In particular, the behaviour of common internal defects, including partial hydrolysis species and silanol nests are not established, despite their expected role in accelerating the decomposition of the framework. In this work, we utilise machine learning potentials combined with density functional calculations to rigorously sample the hydrolysis processes in siliceous zeolites with topologies CHA and MFI under low water conditions and quantify the effect of defects. Internal silanol defect sites are found to accelerate zeolite decomposition primarily by bypassing the initial, highbarrier hydrolysis step. Subsequent steps proceed with lower reaction barriers. However, all reaction steps are found to be highly activated, and unlikely to occur rapidly at room temperature under conditions of low internal water concentration. Exchange-healing routes, which reverse hydrolysis while incorporating oxygen from water molecules are found to be competitive along the entire hydrolysis pathway in CHA, providing an additional source of stabilization against hydrolytic decomposition.

  • Název v anglickém jazyce

    The role of defects in high-silica zeolite hydrolysis and framework healing

  • Popis výsledku anglicky

    The stability of high silica zeolites under standard laboratory and mild steaming conditions is understood to be due to the lack of hydrophilic Al-O-Si moieties, which can be targeted by water via hydrolysis reactions with relatively low barriers. However, in hydrophobic high-silica and siliceous frameworks, the specific interactions between water and the internal framework sites are incompletely understood. In particular, the behaviour of common internal defects, including partial hydrolysis species and silanol nests are not established, despite their expected role in accelerating the decomposition of the framework. In this work, we utilise machine learning potentials combined with density functional calculations to rigorously sample the hydrolysis processes in siliceous zeolites with topologies CHA and MFI under low water conditions and quantify the effect of defects. Internal silanol defect sites are found to accelerate zeolite decomposition primarily by bypassing the initial, highbarrier hydrolysis step. Subsequent steps proceed with lower reaction barriers. However, all reaction steps are found to be highly activated, and unlikely to occur rapidly at room temperature under conditions of low internal water concentration. Exchange-healing routes, which reverse hydrolysis while incorporating oxygen from water molecules are found to be competitive along the entire hydrolysis pathway in CHA, providing an additional source of stabilization against hydrolytic decomposition.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10403 - Physical chemistry

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Microporous and Mesoporous Materials

  • ISSN

    1387-1811

  • e-ISSN

    1873-3093

  • Svazek periodika

    377

  • Číslo periodika v rámci svazku

    September

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    7

  • Strana od-do

    113219

  • Kód UT WoS článku

    001259192300001

  • EID výsledku v databázi Scopus

    2-s2.0-85196172321