Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Evaluating the applicability of high-density UAV LiDAR data for monitoring tundra grassland vegetation

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11310%2F24%3A10484375" target="_blank" >RIV/00216208:11310/24:10484375 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=OweAXHFtVL" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=OweAXHFtVL</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1080/01431161.2024.2383381" target="_blank" >10.1080/01431161.2024.2383381</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Evaluating the applicability of high-density UAV LiDAR data for monitoring tundra grassland vegetation

  • Popis výsledku v původním jazyce

    Grasslands are one of the most widespread biomes on Earth. The interaction of UAV LiDAR with grasses and herbaceous plants is an infrequently covered area of research, apart from its utilisation for the estimation of above ground biomass. To evaluate the applicability of LiDAR for monitoring grassland vegetation, two model plots in the arctic-alpine tundra (Krkono &amp; scaron;e Mountains, Czech Republic) were selected. Throughout the growing season, UAV LiDAR point clouds (800 points/m2) and multispectral imagery (9 cm) were acquired in monthly intervals, along with reference botanical and terrestrial LiDAR data. The study provides insight into the analysis of compact low-lying vegetation at the species level. A set of experiments was conducted focusing on the analysis of LiDAR information loss, vertical strata, and structural metrics computed over the grass species/communities. Random forest was used to determine the importance of metrics by out-of-bag permutation of predictors and to classify vegetation species using UAV LiDAR-based metrics, as well as image-based digital surface models alone and in fusion with multispectral data. The vertical distribution of the UAV LiDAR points varied significantly between species and throughout the growing season. Loss at the canopy bottoms was apparent, with the lowest points corresponding to dry grass matter rather than relief. Grasslands had the highest penetration capability at the start of the growing season. In terms of metrics, maximum canopy height was the most important. The multitemporal LiDAR-derived structural metrics were able to differentiate (F-1 score above 90%) all the shrubs/trees and dominant grass Calamagrostis villosa. Mixed and low-abundance species were indistinguishable. The overall accuracy scores in a 9 (27) cm grid reached 75.1% (78.1) and 63.5% (66.4) for B &amp; iacute;l &amp; aacute; louka meadow and Úpské rašeliniště; bog, respectively. Fusing the LiDAR-derived features with multispectral imagery did not enhance the classification results apart from the delineation of shrubs and trees.

  • Název v anglickém jazyce

    Evaluating the applicability of high-density UAV LiDAR data for monitoring tundra grassland vegetation

  • Popis výsledku anglicky

    Grasslands are one of the most widespread biomes on Earth. The interaction of UAV LiDAR with grasses and herbaceous plants is an infrequently covered area of research, apart from its utilisation for the estimation of above ground biomass. To evaluate the applicability of LiDAR for monitoring grassland vegetation, two model plots in the arctic-alpine tundra (Krkono &amp; scaron;e Mountains, Czech Republic) were selected. Throughout the growing season, UAV LiDAR point clouds (800 points/m2) and multispectral imagery (9 cm) were acquired in monthly intervals, along with reference botanical and terrestrial LiDAR data. The study provides insight into the analysis of compact low-lying vegetation at the species level. A set of experiments was conducted focusing on the analysis of LiDAR information loss, vertical strata, and structural metrics computed over the grass species/communities. Random forest was used to determine the importance of metrics by out-of-bag permutation of predictors and to classify vegetation species using UAV LiDAR-based metrics, as well as image-based digital surface models alone and in fusion with multispectral data. The vertical distribution of the UAV LiDAR points varied significantly between species and throughout the growing season. Loss at the canopy bottoms was apparent, with the lowest points corresponding to dry grass matter rather than relief. Grasslands had the highest penetration capability at the start of the growing season. In terms of metrics, maximum canopy height was the most important. The multitemporal LiDAR-derived structural metrics were able to differentiate (F-1 score above 90%) all the shrubs/trees and dominant grass Calamagrostis villosa. Mixed and low-abundance species were indistinguishable. The overall accuracy scores in a 9 (27) cm grid reached 75.1% (78.1) and 63.5% (66.4) for B &amp; iacute;l &amp; aacute; louka meadow and Úpské rašeliniště; bog, respectively. Fusing the LiDAR-derived features with multispectral imagery did not enhance the classification results apart from the delineation of shrubs and trees.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10508 - Physical geography

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    International Journal for Remote Sensing

  • ISSN

    0143-1161

  • e-ISSN

    1366-5901

  • Svazek periodika

    46

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    35

  • Strana od-do

    42-76

  • Kód UT WoS článku

    001296756900001

  • EID výsledku v databázi Scopus

    2-s2.0-85201817937