Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

A new data-driven map predicts substantial undocumented peatland areas in Amazonia

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11310%2F24%3A10486377" target="_blank" >RIV/00216208:11310/24:10486377 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=uFEjYgaWJw" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=uFEjYgaWJw</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1088/1748-9326/ad677b" target="_blank" >10.1088/1748-9326/ad677b</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    A new data-driven map predicts substantial undocumented peatland areas in Amazonia

  • Popis výsledku v původním jazyce

    Tropical peatlands are among the most carbon-dense terrestrial ecosystems yet recorded. Collectively, they comprise a large but highly uncertain reservoir of the global carbon cycle, with wide-ranging estimates of their global area (441 025-1700 000 km2) and below-ground carbon storage (105-288 Pg C). Substantial gaps remain in our understanding of peatland distribution in some key regions, including most of tropical South America. Here we compile 2413 ground reference points in and around Amazonian peatlands and use them alongside a stack of remote sensing products in a random forest model to generate the first field-data-driven model of peatland distribution across the Amazon basin. Our model predicts a total Amazonian peatland extent of 251 015 km2 (95th percentile confidence interval: 128 671-373 359), greater than that of the Congo basin, but around 30% smaller than a recent model-derived estimate of peatland area across Amazonia. The model performs relatively well against point observations but spatial gaps in the ground reference dataset mean that model uncertainty remains high, particularly in parts of Brazil and Bolivia. For example, we predict significant peatland areas in northern Peru with relatively high confidence, while peatland areas in the Rio Negro basin and adjacent south-western Orinoco basin which have previously been predicted to hold Campinarana or white sand forests, are predicted with greater uncertainty. Similarly, we predict large areas of peatlands in Bolivia, surprisingly given the strong climatic seasonality found over most of the country. Very little field data exists with which to quantitatively assess the accuracy of our map in these regions. Data gaps such as these should be a high priority for new field sampling. This new map can facilitate future research into the vulnerability of peatlands to climate change and anthropogenic impacts, which is likely to vary spatially across the Amazon basin.

  • Název v anglickém jazyce

    A new data-driven map predicts substantial undocumented peatland areas in Amazonia

  • Popis výsledku anglicky

    Tropical peatlands are among the most carbon-dense terrestrial ecosystems yet recorded. Collectively, they comprise a large but highly uncertain reservoir of the global carbon cycle, with wide-ranging estimates of their global area (441 025-1700 000 km2) and below-ground carbon storage (105-288 Pg C). Substantial gaps remain in our understanding of peatland distribution in some key regions, including most of tropical South America. Here we compile 2413 ground reference points in and around Amazonian peatlands and use them alongside a stack of remote sensing products in a random forest model to generate the first field-data-driven model of peatland distribution across the Amazon basin. Our model predicts a total Amazonian peatland extent of 251 015 km2 (95th percentile confidence interval: 128 671-373 359), greater than that of the Congo basin, but around 30% smaller than a recent model-derived estimate of peatland area across Amazonia. The model performs relatively well against point observations but spatial gaps in the ground reference dataset mean that model uncertainty remains high, particularly in parts of Brazil and Bolivia. For example, we predict significant peatland areas in northern Peru with relatively high confidence, while peatland areas in the Rio Negro basin and adjacent south-western Orinoco basin which have previously been predicted to hold Campinarana or white sand forests, are predicted with greater uncertainty. Similarly, we predict large areas of peatlands in Bolivia, surprisingly given the strong climatic seasonality found over most of the country. Very little field data exists with which to quantitatively assess the accuracy of our map in these regions. Data gaps such as these should be a high priority for new field sampling. This new map can facilitate future research into the vulnerability of peatlands to climate change and anthropogenic impacts, which is likely to vary spatially across the Amazon basin.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10611 - Plant sciences, botany

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Environmental Research Letters

  • ISSN

    1748-9326

  • e-ISSN

    1748-9326

  • Svazek periodika

    19

  • Číslo periodika v rámci svazku

    9

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    14

  • Strana od-do

    094019

  • Kód UT WoS článku

    001288952100001

  • EID výsledku v databázi Scopus

    2-s2.0-85201292592