Fe-ZSM-5 outperforms Al-ZSM-5 in paraffin cracking by increasing the olefinicity of C3-C4 products
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11310%2F24%3A10487016" target="_blank" >RIV/00216208:11310/24:10487016 - isvavai.cz</a>
Výsledek na webu
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=IcMeXjx8Yo" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=IcMeXjx8Yo</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.cej.2024.156032" target="_blank" >10.1016/j.cej.2024.156032</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Fe-ZSM-5 outperforms Al-ZSM-5 in paraffin cracking by increasing the olefinicity of C3-C4 products
Popis výsledku v původním jazyce
Iron-modified Al-ZSM-5 increases selectivity to propene, a key petrochemical resulting from fluid catalytic cracking (FCC). However, the type and role of active iron species remain unclear, hindering efforts to streamline the design of selective FCC additives. Here, we investigated Al-free Fe-ZSM-5 catalysts containing iron species in the form of framework Fe(3+), extra-framework Fe(3+), oxidic clusters, and oxide micro aggregates in n-octane cracking (FCC model) to assess their effect on catalytic cracking. DR-UV-Vis spectroscopy, (57)Fe Mössbauer Spectroscopy, FTIR studies of pyridine adsorption, and n-octane cracking tests at 500 °C revealed that framework-associated coordinatively unsaturated Fe(3+) species, which induce strong Lewis acidity, are responsible for paraffin cracking initiation, whereas bulk iron oxides on the zeolite surface are inactive. In comparison with Al-ZSM-5, Fe-ZSM-5 increases the olefinicity of the valuable C(3)-C(4) fractions (selectivity to propene and butenes) and promotes aromatization reactions due to the lower relative strength of Fe-induced Bronsted acid sites and dehydrogenation properties. As shown by our (57)Fe Mössbauer study (performed at -269 °C) of the catalyst in calcined, spent, and regenerated states, Fe-ZSM-5 deactivation is associated with the loss of tetrahedrally coordinated Fe(3+) species. Therefore, tuning Fe-ZSM-5 C(3)-C(4) selective FCC additives requires stabilizing framework Bronsted and framework-associated Lewis acid sites while decreasing the concentration of iron oxide species. Ultimately, these findings may enable us to meet the demand for propene derived from FCC cracking, which is expected to grow in the foreseeable future.
Název v anglickém jazyce
Fe-ZSM-5 outperforms Al-ZSM-5 in paraffin cracking by increasing the olefinicity of C3-C4 products
Popis výsledku anglicky
Iron-modified Al-ZSM-5 increases selectivity to propene, a key petrochemical resulting from fluid catalytic cracking (FCC). However, the type and role of active iron species remain unclear, hindering efforts to streamline the design of selective FCC additives. Here, we investigated Al-free Fe-ZSM-5 catalysts containing iron species in the form of framework Fe(3+), extra-framework Fe(3+), oxidic clusters, and oxide micro aggregates in n-octane cracking (FCC model) to assess their effect on catalytic cracking. DR-UV-Vis spectroscopy, (57)Fe Mössbauer Spectroscopy, FTIR studies of pyridine adsorption, and n-octane cracking tests at 500 °C revealed that framework-associated coordinatively unsaturated Fe(3+) species, which induce strong Lewis acidity, are responsible for paraffin cracking initiation, whereas bulk iron oxides on the zeolite surface are inactive. In comparison with Al-ZSM-5, Fe-ZSM-5 increases the olefinicity of the valuable C(3)-C(4) fractions (selectivity to propene and butenes) and promotes aromatization reactions due to the lower relative strength of Fe-induced Bronsted acid sites and dehydrogenation properties. As shown by our (57)Fe Mössbauer study (performed at -269 °C) of the catalyst in calcined, spent, and regenerated states, Fe-ZSM-5 deactivation is associated with the loss of tetrahedrally coordinated Fe(3+) species. Therefore, tuning Fe-ZSM-5 C(3)-C(4) selective FCC additives requires stabilizing framework Bronsted and framework-associated Lewis acid sites while decreasing the concentration of iron oxide species. Ultimately, these findings may enable us to meet the demand for propene derived from FCC cracking, which is expected to grow in the foreseeable future.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10403 - Physical chemistry
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Chemical Engineering Journal
ISSN
1385-8947
e-ISSN
1873-3212
Svazek periodika
499
Číslo periodika v rámci svazku
November
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
14
Strana od-do
156032
Kód UT WoS článku
001327754400001
EID výsledku v databázi Scopus
2-s2.0-85204936203