Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Thermal and Shear-Rate Effects in Landslides: From the Classics to the Future

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11310%2F24%3A10488840" target="_blank" >RIV/00216208:11310/24:10488840 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1007/978-981-99-9057-3_6" target="_blank" >https://doi.org/10.1007/978-981-99-9057-3_6</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-981-99-9057-3_6" target="_blank" >10.1007/978-981-99-9057-3_6</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Thermal and Shear-Rate Effects in Landslides: From the Classics to the Future

  • Popis výsledku v původním jazyce

    The frictional resistance of geomaterials upon localized shearing has been shown to depend on the rate of shearing. Both weakening and strengthening phenomena have been observed, and mechanisms have been proposed which take the mineralogy and stress level into account. Evidence also exists that temperature plays an important role in defining the frictional resistance as well as its dependence on the shear rate. Temperature and rate-dependent mechanisms can indeed control landslide runouts, yielding runaway sliding or prolonged slow creep displacements. We reviewed the classic literature on the matter and noted that, while studies on shear-rate effects are abundant, systematic classifications useful in predicting landslide fates in a variety of lithologies and environments are lacking. As for thermal effects, these are well studied with respect to large and fast-runout landslides, where frictional heating plays a major role. Conversely, little is known about changes in slope stability (prior to failure, remobilization, or reactivation) in relation to changes in ground temperature caused by varying boundary conditions, such as changes in groundwater temperature or heat transfer from the surface under seasonal or long-term climatic changes. Results of our preliminary experiments, targeting clay-rich materials, demonstrate an important effect of temperature on the residual shear strength, which is coupled with changes in shear-rate response. Catchment-scale statistical analyses also reveal that surface temperature can be correlated with landslide activity in space and time. We conclude by suggesting that landslide modelling approaches in the future should account for thermal and shear-rate effects. In physically-based modelling, this may be achieved via coupled thermo-hydro-mechanical formulations, in which the constitutive model includes a time-dependent (e.g., thermo-viscous) component.

  • Název v anglickém jazyce

    Thermal and Shear-Rate Effects in Landslides: From the Classics to the Future

  • Popis výsledku anglicky

    The frictional resistance of geomaterials upon localized shearing has been shown to depend on the rate of shearing. Both weakening and strengthening phenomena have been observed, and mechanisms have been proposed which take the mineralogy and stress level into account. Evidence also exists that temperature plays an important role in defining the frictional resistance as well as its dependence on the shear rate. Temperature and rate-dependent mechanisms can indeed control landslide runouts, yielding runaway sliding or prolonged slow creep displacements. We reviewed the classic literature on the matter and noted that, while studies on shear-rate effects are abundant, systematic classifications useful in predicting landslide fates in a variety of lithologies and environments are lacking. As for thermal effects, these are well studied with respect to large and fast-runout landslides, where frictional heating plays a major role. Conversely, little is known about changes in slope stability (prior to failure, remobilization, or reactivation) in relation to changes in ground temperature caused by varying boundary conditions, such as changes in groundwater temperature or heat transfer from the surface under seasonal or long-term climatic changes. Results of our preliminary experiments, targeting clay-rich materials, demonstrate an important effect of temperature on the residual shear strength, which is coupled with changes in shear-rate response. Catchment-scale statistical analyses also reveal that surface temperature can be correlated with landslide activity in space and time. We conclude by suggesting that landslide modelling approaches in the future should account for thermal and shear-rate effects. In physically-based modelling, this may be achieved via coupled thermo-hydro-mechanical formulations, in which the constitutive model includes a time-dependent (e.g., thermo-viscous) component.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10505 - Geology

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Engineering Geology for a Habitable Earth: IAEG XIV Congress 2023 Proceedings Vol. 1, Chengdu, China

  • ISBN

    978-981-9990-56-6

  • ISSN

    1863-5520

  • e-ISSN

    1863-5539

  • Počet stran výsledku

    12

  • Strana od-do

    71-82

  • Název nakladatele

    Springer Nature

  • Místo vydání

    Cham

  • Místo konání akce

    Chengdu, China

  • Datum konání akce

    21. 9. 2023

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku