Geometrické grafy bez tří disjunktních hran
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F05%3A00000978" target="_blank" >RIV/00216208:11320/05:00000978 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Geometric Graphs with No Three Disjoint Edges
Popis výsledku v původním jazyce
A geometric graph is a graph drawn in the plane so that the vertices are represented by points in general position and edges are represented by straight line segments. We show that a geometric graph on n vertices with no three pairwise disjoint edges hasat most 2.5n edges. This result is tight up to an additive constant.
Název v anglickém jazyce
Geometric Graphs with No Three Disjoint Edges
Popis výsledku anglicky
A geometric graph is a graph drawn in the plane so that the vertices are represented by points in general position and edges are represented by straight line segments. We show that a geometric graph on n vertices with no three pairwise disjoint edges hasat most 2.5n edges. This result is tight up to an additive constant.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/1M0545" target="_blank" >1M0545: Institut Teoretické Informatiky</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2005
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Discrete and Computational Geometry
ISSN
0179-5376
e-ISSN
—
Svazek periodika
34
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
17
Strana od-do
679-695
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—