Generalised Dualities and Finite Maximal Antichains
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F06%3A00206148" target="_blank" >RIV/00216208:11320/06:00206148 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Generalised Dualities and Finite Maximal Antichains
Popis výsledku v původním jazyce
We fully characterise the situations where the existence of a homomorphism from a digraph G to at least one of a finite set H of directed graphs is determined by a finite number of forbidden subgraphs. We prove that these situations, called generalised dualities, are characterised by the non-existence of a homomorphism to G from a finite set of forests. Furthermore, we characterise all finite maximal antichains in the partial order of directed graphs ordered by the existence of homomorphism. We show that these antichains correspond exactly to the generalised dualities. This solves a problem posed in [1]. Finally, we show that it is NP-hard to decide whether a finite set of digraphs forms a maximal antichain.
Název v anglickém jazyce
Generalised Dualities and Finite Maximal Antichains
Popis výsledku anglicky
We fully characterise the situations where the existence of a homomorphism from a digraph G to at least one of a finite set H of directed graphs is determined by a finite number of forbidden subgraphs. We prove that these situations, called generalised dualities, are characterised by the non-existence of a homomorphism to G from a finite set of forests. Furthermore, we characterise all finite maximal antichains in the partial order of directed graphs ordered by the existence of homomorphism. We show that these antichains correspond exactly to the generalised dualities. This solves a problem posed in [1]. Finally, we show that it is NP-hard to decide whether a finite set of digraphs forms a maximal antichain.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/1M0545" target="_blank" >1M0545: Institut Teoretické Informatiky</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2006
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Graph-Theoretic Concepts in Computer Science
ISBN
3-540-48381-0
ISSN
—
e-ISSN
—
Počet stran výsledku
10
Strana od-do
—
Název nakladatele
Springer
Místo vydání
Berlin
Místo konání akce
Berlin
Datum konání akce
1. 1. 2006
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000243130300003