$k$-chromatic number of graphs on surfaces
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F09%3A00207123" target="_blank" >RIV/00216208:11320/09:00207123 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
$k$-chromatic number of graphs on surfaces
Popis výsledku v původním jazyce
Considering all partitions of the edges of a graph G to k parts, the the k-chromatic number of G is is the maximum of the sum of the chromatic numbers of the parts. We derive a Heawood-type formula for the k-chromatic number of graphs embedded in a fixedsurface, improving the previously known upper bounds. In infinitely many cases, the new upper bound coincides with the lower bound obtained from embedding disjoint cliques in the surface. In the proof of this result, we derive a variant of Euler's Formula for union of several graphs that might be interesting independently.
Název v anglickém jazyce
$k$-chromatic number of graphs on surfaces
Popis výsledku anglicky
Considering all partitions of the edges of a graph G to k parts, the the k-chromatic number of G is is the maximum of the sum of the chromatic numbers of the parts. We derive a Heawood-type formula for the k-chromatic number of graphs embedded in a fixedsurface, improving the previously known upper bounds. In infinitely many cases, the new upper bound coincides with the lower bound obtained from embedding disjoint cliques in the surface. In the proof of this result, we derive a variant of Euler's Formula for union of several graphs that might be interesting independently.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2009
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
SIAM Journal on Discrete Mathematics
ISSN
0895-4801
e-ISSN
—
Svazek periodika
23
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
10
Strana od-do
—
Kód UT WoS článku
000263103400034
EID výsledku v databázi Scopus
—