Optimal Loo(L2)-error estimates for the DG method applied to nonlinear convection-diffusion problems with nonlinear diffusion
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F10%3A10057175" target="_blank" >RIV/00216208:11320/10:10057175 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Optimal Loo(L2)-error estimates for the DG method applied to nonlinear convection-diffusion problems with nonlinear diffusion
Popis výsledku v původním jazyce
This article is concerned with the analysis of the discontinuous Galerkin finite element method (DGFEM) applied to the space semidiscretization of a nonstationary convection-diffusion problem with nonlinear convection and nonlinear diffusion. Optimal estimates in the Loo(L2)-norm are derived for the symmetric interior penalty (SIPG) scheme in two dimensions. The error analysis is carried out for nonconforming triangular meshes under the assumption that the exact solution of the problem and the solutionof a linearized elliptic dual problem are sufficiently regular.
Název v anglickém jazyce
Optimal Loo(L2)-error estimates for the DG method applied to nonlinear convection-diffusion problems with nonlinear diffusion
Popis výsledku anglicky
This article is concerned with the analysis of the discontinuous Galerkin finite element method (DGFEM) applied to the space semidiscretization of a nonstationary convection-diffusion problem with nonlinear convection and nonlinear diffusion. Optimal estimates in the Loo(L2)-norm are derived for the symmetric interior penalty (SIPG) scheme in two dimensions. The error analysis is carried out for nonconforming triangular meshes under the assumption that the exact solution of the problem and the solutionof a linearized elliptic dual problem are sufficiently regular.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/LC06052" target="_blank" >LC06052: Centrum Jindřicha Nečase pro matematické modelování</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2010
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Numerical Functional Analysis and Optimization
ISSN
0163-0563
e-ISSN
—
Svazek periodika
31
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
28
Strana od-do
—
Kód UT WoS článku
000277592500004
EID výsledku v databázi Scopus
—