Minors of Boolean functions with respect to clique functions and hypergraph homomorphisms
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F10%3A10081051" target="_blank" >RIV/00216208:11320/10:10081051 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Minors of Boolean functions with respect to clique functions and hypergraph homomorphisms
Popis výsledku v původním jazyce
Each clone C on a fixed base set A induces a quasi-order on the set of all operations on A by the following rule f is a e-minor of g if f can be obtained by substituting operations from e for the variables of g. By making use of a representation of Boolean functions by hypergraphs and hypergraph homomorphisms, it is shown that a clone C on {0, 1} has the property that the corresponding C-minor partial order is universal if and only if C is one of the countably many clones of clique functions or the clone of self-dual monotone functions. Furthermore, the C.-minor partial orders are dense when C is a clone of clique functions.
Název v anglickém jazyce
Minors of Boolean functions with respect to clique functions and hypergraph homomorphisms
Popis výsledku anglicky
Each clone C on a fixed base set A induces a quasi-order on the set of all operations on A by the following rule f is a e-minor of g if f can be obtained by substituting operations from e for the variables of g. By making use of a representation of Boolean functions by hypergraphs and hypergraph homomorphisms, it is shown that a clone C on {0, 1} has the property that the corresponding C-minor partial order is universal if and only if C is one of the countably many clones of clique functions or the clone of self-dual monotone functions. Furthermore, the C.-minor partial orders are dense when C is a clone of clique functions.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/1M0545" target="_blank" >1M0545: Institut Teoretické Informatiky</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2010
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
European Journal of Combinatorics
ISSN
0195-6698
e-ISSN
—
Svazek periodika
31
Číslo periodika v rámci svazku
8
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
15
Strana od-do
—
Kód UT WoS článku
000282674700004
EID výsledku v databázi Scopus
—