Tolerance analysis in linear systems and linear programming
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F11%3A10099315" target="_blank" >RIV/00216208:11320/11:10099315 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.tandfonline.com/doi/abs/10.1080/10556788.2011.556635" target="_blank" >http://www.tandfonline.com/doi/abs/10.1080/10556788.2011.556635</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1080/10556788.2011.556635" target="_blank" >10.1080/10556788.2011.556635</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Tolerance analysis in linear systems and linear programming
Popis výsledku v původním jazyce
It is often important to know how different optimality criteria change under input data perturbations. Our aim is to compute tolerances (intervals) for the objective function and the right-hand side coefficients such that these coefficients can independently and simultaneously vary inside their tolerances while preserving the corresponding optimality criterion. We put tolerance analysis in a unified framework that is convenient for algorithmic processing and that is applicable not only in linear programming but for other linear systems as well. We propose an improvement of the known results that is optimal in some sense (the resulting tolerances are maximal and they take into account proportionality). We apply our approach to several optimality invariancies: optimal basis, support set and optimal partition invariancy. Our approach is useful not only for simplex method solvers, but for the interior points methods, too. We show that it is NP-hard to determine the maximal tolerances.
Název v anglickém jazyce
Tolerance analysis in linear systems and linear programming
Popis výsledku anglicky
It is often important to know how different optimality criteria change under input data perturbations. Our aim is to compute tolerances (intervals) for the objective function and the right-hand side coefficients such that these coefficients can independently and simultaneously vary inside their tolerances while preserving the corresponding optimality criterion. We put tolerance analysis in a unified framework that is convenient for algorithmic processing and that is applicable not only in linear programming but for other linear systems as well. We propose an improvement of the known results that is optimal in some sense (the resulting tolerances are maximal and they take into account proportionality). We apply our approach to several optimality invariancies: optimal basis, support set and optimal partition invariancy. Our approach is useful not only for simplex method solvers, but for the interior points methods, too. We show that it is NP-hard to determine the maximal tolerances.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BB - Aplikovaná statistika, operační výzkum
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2011
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Optimization Methods and Software
ISSN
1055-6788
e-ISSN
—
Svazek periodika
26
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
16
Strana od-do
381-396
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—