Parameterized Problems Related to Seidel''s Switching
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F11%3A10100314" target="_blank" >RIV/00216208:11320/11:10100314 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216224:14330/11:00053105
Výsledek na webu
<a href="http://www.dmtcs.org/dmtcs-ojs/index.php/dmtcs/article/view/1531" target="_blank" >http://www.dmtcs.org/dmtcs-ojs/index.php/dmtcs/article/view/1531</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Parameterized Problems Related to Seidel''s Switching
Popis výsledku v původním jazyce
Seidel's switching is a graph operation which makes a given vertex adjacent to precisely those vertices to which it was non-adjacent before, while keeping the rest of the graph unchanged. Two graphs are called switching-equivalent if one can be made isomorphic to the other by a sequence of switches. In this paper, we continue the study of computational complexity aspects of Seidel's switching, concentrating on Fixed Parameter Complexity. Among other results we show that switching to a graph with at mostk edges, to a graph of maximum degree at most k, to a k-regular graph, or to a graph with minimum degree at least k are fixed parameter tractable problems, where k is the parameter. On the other hand, switching to a graph that contains a given fixed graph as an induced subgraph is W [1]-complete. We also show the NP-completeness of switching to a graph with a clique of linear size, and of switching to a graph with small number of edges.
Název v anglickém jazyce
Parameterized Problems Related to Seidel''s Switching
Popis výsledku anglicky
Seidel's switching is a graph operation which makes a given vertex adjacent to precisely those vertices to which it was non-adjacent before, while keeping the rest of the graph unchanged. Two graphs are called switching-equivalent if one can be made isomorphic to the other by a sequence of switches. In this paper, we continue the study of computational complexity aspects of Seidel's switching, concentrating on Fixed Parameter Complexity. Among other results we show that switching to a graph with at mostk edges, to a graph of maximum degree at most k, to a k-regular graph, or to a graph with minimum degree at least k are fixed parameter tractable problems, where k is the parameter. On the other hand, switching to a graph that contains a given fixed graph as an induced subgraph is W [1]-complete. We also show the NP-completeness of switching to a graph with a clique of linear size, and of switching to a graph with small number of edges.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/1M0545" target="_blank" >1M0545: Institut Teoretické Informatiky</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2011
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Discrete Mathematics and Theoretical Computer Science
ISSN
1365-8050
e-ISSN
—
Svazek periodika
13
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
FR - Francouzská republika
Počet stran výsledku
24
Strana od-do
19-42
Kód UT WoS článku
000290721600002
EID výsledku v databázi Scopus
—