Conditional copulas, association measures and their applications
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F11%3A10100436" target="_blank" >RIV/00216208:11320/11:10100436 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.csda.2010.11.010" target="_blank" >http://dx.doi.org/10.1016/j.csda.2010.11.010</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.csda.2010.11.010" target="_blank" >10.1016/j.csda.2010.11.010</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Conditional copulas, association measures and their applications
Popis výsledku v původním jazyce
One way to model a dependence structure is through the copula function which is a mean to capture the dependence structure in the joint distribution of variables. Association measures such as Kendall's tau or Spearman's rho can be expressed as functionals of the copula. The dependence structure between two variables can be highly influenced by a covariate, and it is of real interest to know how this dependence structure changes with the value taken by the covariate. This motivates the need for introducing conditional copulas, and the associated conditional Kendall's tau and Spearman's rho association measures. After the introduction and motivation of these concepts, two nonparametric estimators for a conditional copula are proposed and discussed. Thennonparametric estimates for the conditional association measures are derived. A key issue is that these measures are now looked at as functions in the covariate.
Název v anglickém jazyce
Conditional copulas, association measures and their applications
Popis výsledku anglicky
One way to model a dependence structure is through the copula function which is a mean to capture the dependence structure in the joint distribution of variables. Association measures such as Kendall's tau or Spearman's rho can be expressed as functionals of the copula. The dependence structure between two variables can be highly influenced by a covariate, and it is of real interest to know how this dependence structure changes with the value taken by the covariate. This motivates the need for introducing conditional copulas, and the associated conditional Kendall's tau and Spearman's rho association measures. After the introduction and motivation of these concepts, two nonparametric estimators for a conditional copula are proposed and discussed. Thennonparametric estimates for the conditional association measures are derived. A key issue is that these measures are now looked at as functions in the covariate.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/LC06024" target="_blank" >LC06024: Centrum Jaroslava Hájka pro teoretickou a aplikovanou statistiku</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2011
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Computational Statistics and Data Analysis
ISSN
0167-9473
e-ISSN
—
Svazek periodika
55
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
13
Strana od-do
1919-1932
Kód UT WoS článku
000287952900003
EID výsledku v databázi Scopus
—