Revisiting Techniques for Lowerbounding the Dynamic Time Warping Distance
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F12%3A10124012" target="_blank" >RIV/00216208:11320/12:10124012 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.springerlink.com/content/r18181338j358n00/" target="_blank" >http://www.springerlink.com/content/r18181338j358n00/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-642-32153-5_14" target="_blank" >10.1007/978-3-642-32153-5_14</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Revisiting Techniques for Lowerbounding the Dynamic Time Warping Distance
Popis výsledku v původním jazyce
The dynamic time warping (DTW) distance has been used as a popular measure to compare similarities of numeric time series because it provides robust matching that recognizes warps in time, different sampling rate, etc. Although DTW computation can be optimized by dynamic programming, it is still expensive, so there have been many attempts proposed to speedup DTW-based similarity search by distance lowerbounding. Some approaches assume a constrained variant of DTW (i.e., fixed dimensions, warping windowconstraint, ground distance), while others do not. In this paper, we comprehensively revisit the problem of DTW lowerbounding, define a general form of DTW that fits all the existing variants and goes even beyond. For the constrained variants of generalDTW we propose a lowerbound construction generalizing the LB_Keogh that for particular ground distances offers speedup by up to two orders of magnitude. Furthermore, we apply metric and ptolemaic lowerbounding on unconstrained variants of
Název v anglickém jazyce
Revisiting Techniques for Lowerbounding the Dynamic Time Warping Distance
Popis výsledku anglicky
The dynamic time warping (DTW) distance has been used as a popular measure to compare similarities of numeric time series because it provides robust matching that recognizes warps in time, different sampling rate, etc. Although DTW computation can be optimized by dynamic programming, it is still expensive, so there have been many attempts proposed to speedup DTW-based similarity search by distance lowerbounding. Some approaches assume a constrained variant of DTW (i.e., fixed dimensions, warping windowconstraint, ground distance), while others do not. In this paper, we comprehensively revisit the problem of DTW lowerbounding, define a general form of DTW that fits all the existing variants and goes even beyond. For the constrained variants of generalDTW we propose a lowerbound construction generalizing the LB_Keogh that for particular ground distances offers speedup by up to two orders of magnitude. Furthermore, we apply metric and ptolemaic lowerbounding on unconstrained variants of
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2012
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Lecture Notes in Computer Science
ISSN
0302-9743
e-ISSN
—
Svazek periodika
7404
Číslo periodika v rámci svazku
2012
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
17
Strana od-do
192-208
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—