Boolean functions with long prime implicants
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F12%3A10126636" target="_blank" >RIV/00216208:11320/12:10126636 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.cs.uic.edu/pub/Isaim2012/WebPreferences/ISAIM2012_Boolean_Cepek_etal.pdf" target="_blank" >http://www.cs.uic.edu/pub/Isaim2012/WebPreferences/ISAIM2012_Boolean_Cepek_etal.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Boolean functions with long prime implicants
Popis výsledku v původním jazyce
In this short note we introduce a class of Boolean functions de?ned by a minimum length of its prime implicants. We show that given a DNF one can test in polynomial time whether it represents a function from this class. Moreover, in case that the answeris af?rmative we present a polynomial time algorithm which outputs a shortest DNF representation of the given function. Therefore the de?ned class of functions is a new member of a relatively small family of classes for which the Boolean minimization problem can be solved in polynomial time. Finally, we present a generalization of the above class which is still recognizable in polynomial time, and for which the Boolean minimization problem can be approximated within a constant factor.
Název v anglickém jazyce
Boolean functions with long prime implicants
Popis výsledku anglicky
In this short note we introduce a class of Boolean functions de?ned by a minimum length of its prime implicants. We show that given a DNF one can test in polynomial time whether it represents a function from this class. Moreover, in case that the answeris af?rmative we present a polynomial time algorithm which outputs a shortest DNF representation of the given function. Therefore the de?ned class of functions is a new member of a relatively small family of classes for which the Boolean minimization problem can be solved in polynomial time. Finally, we present a generalization of the above class which is still recognizable in polynomial time, and for which the Boolean minimization problem can be approximated within a constant factor.
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GAP202%2F10%2F1188" target="_blank" >GAP202/10/1188: KnowSched: Znalostní techniky v rozvrhování</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2012
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů