PSEUDO-FINITE HARD INSTANCES FOR A STUDENT-TEACHER GAME WITH A NISAN-WIGDERSON GENERATOR
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F12%3A10127159" target="_blank" >RIV/00216208:11320/12:10127159 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/67985840:_____/12:00385494
Výsledek na webu
<a href="http://dx.doi.org/10.2168/LMCS-8(3:09)2012" target="_blank" >http://dx.doi.org/10.2168/LMCS-8(3:09)2012</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.2168/LMCS-8(3:09)2012" target="_blank" >10.2168/LMCS-8(3:09)2012</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
PSEUDO-FINITE HARD INSTANCES FOR A STUDENT-TEACHER GAME WITH A NISAN-WIGDERSON GENERATOR
Popis výsledku v původním jazyce
For an NP boolean AND coNP function g of the Nisan-Wigderson type and a string b outside its range we consider a two player game on a common input a to the function. One player, a computationally limited Student, tries to find a bit of g(a) that differsfrom the corresponding bit of b. He can query a computationally unlimited Teacher for the witnesses of the values of constantly many bits of g(a). The Student computes the queries from a and from Teacher's answers to his previous queries. It was proved in [Kra11b] that if g is based on a hard bit of a one-way permutation then no Student computed by a polynomial size circuit can succeed on all a. In this paper we give a lower bound on the number of inputs a any such Student must fail on. Using that we show that there is a pseudo-finite set of hard instances on which all uniform students must fail. The hard-core set is defined in a non-standard model of true arithmetic and has applications in a forcing construction from [Kra11a].
Název v anglickém jazyce
PSEUDO-FINITE HARD INSTANCES FOR A STUDENT-TEACHER GAME WITH A NISAN-WIGDERSON GENERATOR
Popis výsledku anglicky
For an NP boolean AND coNP function g of the Nisan-Wigderson type and a string b outside its range we consider a two player game on a common input a to the function. One player, a computationally limited Student, tries to find a bit of g(a) that differsfrom the corresponding bit of b. He can query a computationally unlimited Teacher for the witnesses of the values of constantly many bits of g(a). The Student computes the queries from a and from Teacher's answers to his previous queries. It was proved in [Kra11b] that if g is based on a hard bit of a one-way permutation then no Student computed by a polynomial size circuit can succeed on all a. In this paper we give a lower bound on the number of inputs a any such Student must fail on. Using that we show that there is a pseudo-finite set of hard instances on which all uniform students must fail. The hard-core set is defined in a non-standard model of true arithmetic and has applications in a forcing construction from [Kra11a].
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/IAA100190902" target="_blank" >IAA100190902: Matematická logika, složitost a algoritmy</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2012
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Logical Methods in Computer Science
ISSN
1860-5974
e-ISSN
—
Svazek periodika
8
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
8
Strana od-do
1-8
Kód UT WoS článku
000309447200009
EID výsledku v databázi Scopus
—