Self-energy of a bound electron for excited states
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F12%3A10128523" target="_blank" >RIV/00216208:11320/12:10128523 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1103/PhysRevA.86.042514" target="_blank" >http://dx.doi.org/10.1103/PhysRevA.86.042514</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1103/PhysRevA.86.042514" target="_blank" >10.1103/PhysRevA.86.042514</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Self-energy of a bound electron for excited states
Popis výsledku v původním jazyce
The method for the evaluation of the self-energy of bound electron is proposed. The integration over four-momenta of virtual photons is done in a way that preserves manifest Lorentz invariance. The resulting expression can then be decomposed into high-and low-energy parts in a Lorentz invariant fashion. The high-energy part depends only on the behavior of the wave function of the reference state in the immediate vicinity of the nucleus and can be calculated analytically. The low-energy part depends on further details of the atomic structure and has to be calculated numerically. The results accurate at least up to alpha(Z alpha)(6) are obtained for non-S states and normalized difference n(3)Delta E-n - Delta E-1 of the S states. The method is applied tothe states with the principal quantum number n ranging from 2 to 10, with the orbital quantum number l ranging from 0 to 3 and with the nuclear charges Z ranging from 1 to 30. In the cases that were already considered in literature a ver
Název v anglickém jazyce
Self-energy of a bound electron for excited states
Popis výsledku anglicky
The method for the evaluation of the self-energy of bound electron is proposed. The integration over four-momenta of virtual photons is done in a way that preserves manifest Lorentz invariance. The resulting expression can then be decomposed into high-and low-energy parts in a Lorentz invariant fashion. The high-energy part depends only on the behavior of the wave function of the reference state in the immediate vicinity of the nucleus and can be calculated analytically. The low-energy part depends on further details of the atomic structure and has to be calculated numerically. The results accurate at least up to alpha(Z alpha)(6) are obtained for non-S states and normalized difference n(3)Delta E-n - Delta E-1 of the S states. The method is applied tothe states with the principal quantum number n ranging from 2 to 10, with the orbital quantum number l ranging from 0 to 3 and with the nuclear charges Z ranging from 1 to 30. In the cases that were already considered in literature a ver
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BE - Teoretická fyzika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GAP205%2F10%2F0228" target="_blank" >GAP205/10/0228: Struktura a dynamika bioinorganických komplexů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2012
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Physical Review A - Atomic Molecular and Optical Physics
ISSN
1050-2947
e-ISSN
—
Svazek periodika
86
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
19
Strana od-do
—
Kód UT WoS článku
000310259600003
EID výsledku v databázi Scopus
—