Approximations and Endomorphism Algebras of Modules
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F12%3A10129322" target="_blank" >RIV/00216208:11320/12:10129322 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1515/9783110218114" target="_blank" >http://dx.doi.org/10.1515/9783110218114</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1515/9783110218114" target="_blank" >10.1515/9783110218114</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Approximations and Endomorphism Algebras of Modules
Popis výsledku v původním jazyce
This second, revised and substantially extended edition of Approximations and Endomorphism Algebras of Modules reflects both the depth and the width of recent developments in the area since the first edition appeared in 2006. The new division of the monograph into two volumes roughly corresponds to its two central topics, approximation theory (Volume 1) and realization theorems for modules (Volume 2). It is a widely accepted fact that the category of all modules over a general associative ring is too complex to admit classification. Unless the ring is of finite representation type we must limit attempts at classification to some restricted subcategories of modules. The wild character of the category of all modules, or of one of its subcategories C, isoften indicated by the presence of a realization theorem, that is, by the fact that any reasonable algebra is isomorphic to the endomorphism algebra of a module from C. This results in the existence of pathological direct sum decompositio
Název v anglickém jazyce
Approximations and Endomorphism Algebras of Modules
Popis výsledku anglicky
This second, revised and substantially extended edition of Approximations and Endomorphism Algebras of Modules reflects both the depth and the width of recent developments in the area since the first edition appeared in 2006. The new division of the monograph into two volumes roughly corresponds to its two central topics, approximation theory (Volume 1) and realization theorems for modules (Volume 2). It is a widely accepted fact that the category of all modules over a general associative ring is too complex to admit classification. Unless the ring is of finite representation type we must limit attempts at classification to some restricted subcategories of modules. The wild character of the category of all modules, or of one of its subcategories C, isoften indicated by the presence of a realization theorem, that is, by the fact that any reasonable algebra is isomorphic to the endomorphism algebra of a module from C. This results in the existence of pathological direct sum decompositio
Klasifikace
Druh
B - Odborná kniha
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GBP201%2F12%2FG028" target="_blank" >GBP201/12/G028: Ústav Eduarda Čecha pro algebru, geometrii a matematickou fyziku</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2012
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
ISBN
978-3-11-021810-7
Počet stran knihy
912
Název nakladatele
Walter de Gruyter GmbH & Co
Místo vydání
Berlin
Kód UT WoS knihy
—