Anti-plane stress state of a plate with a V-notch for a new class of elastic solids
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F13%3A10140155" target="_blank" >RIV/00216208:11320/13:10140155 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/s10704-012-9772-5" target="_blank" >http://dx.doi.org/10.1007/s10704-012-9772-5</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10704-012-9772-5" target="_blank" >10.1007/s10704-012-9772-5</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Anti-plane stress state of a plate with a V-notch for a new class of elastic solids
Popis výsledku v původním jazyce
The main purpose of this study is to investigate the efficacy and usefulness of a class of recently proposed models that could be reasonable candidates for describing the response of brittle elastic materials. The class of models that are considered allows for a non-linear relationship between the linearized elastic strain and the Cauchy stress, and this allows one to describe situations wherein the stress increases while the strain yet remains small. Thus one would be in a position to model the response of brittle elastic bodies in the neighborhood of the tips of cracks and notches. In this paper we study the behavior of such models in a plate with a V-notch subject to a state of anti-plane stress. This geometrical simplification enables us to characterize the governing equation for the problem by means of the Airy stress function, though the constitutive relation is a non-linear relation between the linearized strain and the stress. We study the problem numerically by appealing to th
Název v anglickém jazyce
Anti-plane stress state of a plate with a V-notch for a new class of elastic solids
Popis výsledku anglicky
The main purpose of this study is to investigate the efficacy and usefulness of a class of recently proposed models that could be reasonable candidates for describing the response of brittle elastic materials. The class of models that are considered allows for a non-linear relationship between the linearized elastic strain and the Cauchy stress, and this allows one to describe situations wherein the stress increases while the strain yet remains small. Thus one would be in a position to model the response of brittle elastic bodies in the neighborhood of the tips of cracks and notches. In this paper we study the behavior of such models in a plate with a V-notch subject to a state of anti-plane stress. This geometrical simplification enables us to characterize the governing equation for the problem by means of the Airy stress function, though the constitutive relation is a non-linear relation between the linearized strain and the stress. We study the problem numerically by appealing to th
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA201%2F09%2F0917" target="_blank" >GA201/09/0917: Matematická a počítačová analýza evolučních procesů v nelineárních viskoelastických tekutinách</a><br>
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2013
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Fracture
ISSN
0376-9429
e-ISSN
—
Svazek periodika
179
Číslo periodika v rámci svazku
1-2
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
15
Strana od-do
59-73
Kód UT WoS článku
000312407400005
EID výsledku v databázi Scopus
—