Polynomial-Time Homology for Simplicial Eilenberg-MacLane Spaces
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F13%3A10159291" target="_blank" >RIV/00216208:11320/13:10159291 - isvavai.cz</a>
Výsledek na webu
<a href="http://link.springer.com/article/10.1007%2Fs10208-013-9159-7" target="_blank" >http://link.springer.com/article/10.1007%2Fs10208-013-9159-7</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10208-013-9159-7" target="_blank" >10.1007/s10208-013-9159-7</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Polynomial-Time Homology for Simplicial Eilenberg-MacLane Spaces
Popis výsledku v původním jazyce
In an earlier paper of Cadek, Vokrinek, Wagner, and the present authors, we investigated an algorithmic problem in computational algebraic topology, namely, the computation of all possible homotopy classes of maps between two topological spaces, under suitable restriction on the spaces. We aim at showing that, if the dimensions of the considered spaces are bounded by a constant, then the computations can be done in polynomial time. In this paper we make a significant technical step towards this goal: weshow that the Eilenberg-MacLane space , represented as a simplicial group, can be equipped with polynomial-time homology (this is a polynomial-time version of effective homology considered in previous works of the third author and co-workers). To this end, we construct a suitable discrete vector field, in the sense of Forman's discrete Morse theory, on . The construction is purely combinatorial and it can be understood as a certain procedure for reducing finite sequences of integers, wi
Název v anglickém jazyce
Polynomial-Time Homology for Simplicial Eilenberg-MacLane Spaces
Popis výsledku anglicky
In an earlier paper of Cadek, Vokrinek, Wagner, and the present authors, we investigated an algorithmic problem in computational algebraic topology, namely, the computation of all possible homotopy classes of maps between two topological spaces, under suitable restriction on the spaces. We aim at showing that, if the dimensions of the considered spaces are bounded by a constant, then the computations can be done in polynomial time. In this paper we make a significant technical step towards this goal: weshow that the Eilenberg-MacLane space , represented as a simplicial group, can be equipped with polynomial-time homology (this is a polynomial-time version of effective homology considered in previous works of the third author and co-workers). To this end, we construct a suitable discrete vector field, in the sense of Forman's discrete Morse theory, on . The construction is purely combinatorial and it can be understood as a certain procedure for reducing finite sequences of integers, wi
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/1M0545" target="_blank" >1M0545: Institut Teoretické Informatiky</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2013
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Foundations of Computational Mathematics
ISSN
1615-3375
e-ISSN
—
Svazek periodika
13
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
29
Strana od-do
935-963
Kód UT WoS článku
000326735300004
EID výsledku v databázi Scopus
—