On discrete field theory properties of the dimer and Ising models and their conformal field theory limits
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F13%3A10172782" target="_blank" >RIV/00216208:11320/13:10172782 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1063/1.4807308" target="_blank" >http://dx.doi.org/10.1063/1.4807308</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1063/1.4807308" target="_blank" >10.1063/1.4807308</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On discrete field theory properties of the dimer and Ising models and their conformal field theory limits
Popis výsledku v původním jazyce
Various mathematical aspects of discrete models on graphs, specifically the Dimer and the Ising models. We focus on proving gluing formulas for individual summands of the partition function. Also partial results regarding conjectured limits realized by fermions in rational conformal field theories.
Název v anglickém jazyce
On discrete field theory properties of the dimer and Ising models and their conformal field theory limits
Popis výsledku anglicky
Various mathematical aspects of discrete models on graphs, specifically the Dimer and the Ising models. We focus on proving gluing formulas for individual summands of the partition function. Also partial results regarding conjectured limits realized by fermions in rational conformal field theories.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA201%2F08%2F0397" target="_blank" >GA201/08/0397: Algebraické metody v geometrii a topologii</a><br>
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2013
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Mathematical Physics
ISSN
0022-2488
e-ISSN
—
Svazek periodika
54
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
25
Strana od-do
—
Kód UT WoS článku
000320673000048
EID výsledku v databázi Scopus
—