Better bounds for incremental frequency allocation in bipartite graphs
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F13%3A10190754" target="_blank" >RIV/00216208:11320/13:10190754 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/67985840:_____/13:00422569
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.tcs.2012.05.020" target="_blank" >http://dx.doi.org/10.1016/j.tcs.2012.05.020</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.tcs.2012.05.020" target="_blank" >10.1016/j.tcs.2012.05.020</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Better bounds for incremental frequency allocation in bipartite graphs
Popis výsledku v původním jazyce
We study frequency allocation in wireless networks. A wireless network is modeled by an undirected graph, with vertices corresponding to cells. In each vertex, we have a certain number of requests, and each of those requests must be assigned a differentfrequency. Edges represent conflicts between cells, meaning that frequencies in adjacent vertices must be different as well. The objective is to minimize the total number of used frequencies. The offline version of the problem is known to be NP-hard. Inthe incremental version, requests for frequencies arrive over time and the algorithm is required to assign a frequency to a request as soon as it arrives. Competitive incremental algorithms have been studied for several classes of graphs. For paths, theoptimal (asymptotic) ratio is known to be 4/3, while for hexagonal-cell graphs it is between 1.5 and 1.9126. For xi-colorable graphs, the ratio of (xi + 1)/2 can be achieved. In this paper, we prove nearly tight bounds on the asymptotic c
Název v anglickém jazyce
Better bounds for incremental frequency allocation in bipartite graphs
Popis výsledku anglicky
We study frequency allocation in wireless networks. A wireless network is modeled by an undirected graph, with vertices corresponding to cells. In each vertex, we have a certain number of requests, and each of those requests must be assigned a differentfrequency. Edges represent conflicts between cells, meaning that frequencies in adjacent vertices must be different as well. The objective is to minimize the total number of used frequencies. The offline version of the problem is known to be NP-hard. Inthe incremental version, requests for frequencies arrive over time and the algorithm is required to assign a frequency to a request as soon as it arrives. Competitive incremental algorithms have been studied for several classes of graphs. For paths, theoptimal (asymptotic) ratio is known to be 4/3, while for hexagonal-cell graphs it is between 1.5 and 1.9126. For xi-colorable graphs, the ratio of (xi + 1)/2 can be achieved. In this paper, we prove nearly tight bounds on the asymptotic c
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2013
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Theoretical Computer Science
ISSN
0304-3975
e-ISSN
—
Svazek periodika
514
Číslo periodika v rámci svazku
November
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
9
Strana od-do
75-83
Kód UT WoS článku
000329014000006
EID výsledku v databázi Scopus
—