Comparing Datasets by Attribute Alignment
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F14%3A10284440" target="_blank" >RIV/00216208:11320/14:10284440 - isvavai.cz</a>
Výsledek na webu
<a href="http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7008148" target="_blank" >http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7008148</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/CIDM.2014.7008148" target="_blank" >10.1109/CIDM.2014.7008148</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Comparing Datasets by Attribute Alignment
Popis výsledku v původním jazyce
Metalearning approach to the model selection problem - exploiting the idea that algorithms perform similarly on similar datasets - requires a suitable metric on the dataset space. One common approach compares the datasets based on fixed number of features describing the datasets as a whole. The information based on individual attributes is usually aggregated, taken for the most relevant attributes only, or omitted altogether. In this paper, we propose an approach that aligns complete sets of attributesof the datasets, allowing for different number of attributes. By supplying the distance between two attributes, one can find the alignment minimizing the sum of individual distances between aligned attributes. We present two methods that are able to findsuch an alignment. They differ in computational complexity and presumptions about the distance function between two attributes supplied. Experiments were performed using the proposed methods and the results were compared with the baselin
Název v anglickém jazyce
Comparing Datasets by Attribute Alignment
Popis výsledku anglicky
Metalearning approach to the model selection problem - exploiting the idea that algorithms perform similarly on similar datasets - requires a suitable metric on the dataset space. One common approach compares the datasets based on fixed number of features describing the datasets as a whole. The information based on individual attributes is usually aggregated, taken for the most relevant attributes only, or omitted altogether. In this paper, we propose an approach that aligns complete sets of attributesof the datasets, allowing for different number of attributes. By supplying the distance between two attributes, one can find the alignment minimizing the sum of individual distances between aligned attributes. We present two methods that are able to findsuch an alignment. They differ in computational complexity and presumptions about the distance function between two attributes supplied. Experiments were performed using the proposed methods and the results were compared with the baselin
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
IEEE CIDM
ISBN
978-1-4799-4519-1
ISSN
—
e-ISSN
—
Počet stran výsledku
7
Strana od-do
56-62
Název nakladatele
IEEE
Místo vydání
Orlando, Fl
Místo konání akce
Orlando
Datum konání akce
9. 12. 2014
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—