Lessons Learned from the Effort to Solve Cooperative Path-Finding Optimally: Reductions to Propositional Satisfiability
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F14%3A10287452" target="_blank" >RIV/00216208:11320/14:10287452 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Lessons Learned from the Effort to Solve Cooperative Path-Finding Optimally: Reductions to Propositional Satisfiability
Popis výsledku v původním jazyce
This paper addresses makespan optimal solving of cooperative path-finding problem (CPF) by translating it to propositional satisfiability (SAT). The task in CPF is to relocate a set of agents to given goal locations so that they do not collide with eachother. Recent findings indicate that a simple direct encoding outperforms the more elaborate encodings based on binary encodings of multi-value state variables. The direct encoding is further improved by a hierarchical build-up that uses auxiliary variables to reduce its size in this work. The conducted experimental evaluation shown that the simple design of the encoding together with new improvements which reduced its size significantly are key enablers for faster solving of the encoded CPFs than withexisting encodings. It has been also shown that the SAT based methods dominates over A* based methods in envi-ronments with high occupancy by agents.
Název v anglickém jazyce
Lessons Learned from the Effort to Solve Cooperative Path-Finding Optimally: Reductions to Propositional Satisfiability
Popis výsledku anglicky
This paper addresses makespan optimal solving of cooperative path-finding problem (CPF) by translating it to propositional satisfiability (SAT). The task in CPF is to relocate a set of agents to given goal locations so that they do not collide with eachother. Recent findings indicate that a simple direct encoding outperforms the more elaborate encodings based on binary encodings of multi-value state variables. The direct encoding is further improved by a hierarchical build-up that uses auxiliary variables to reduce its size in this work. The conducted experimental evaluation shown that the simple design of the encoding together with new improvements which reduced its size significantly are key enablers for faster solving of the encoded CPFs than withexisting encodings. It has been also shown that the SAT based methods dominates over A* based methods in envi-ronments with high occupancy by agents.
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
JD - Využití počítačů, robotika a její aplikace
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GAP103%2F10%2F1287" target="_blank" >GAP103/10/1287: PlanEx: Propojení plánování a provádění plánů</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů