Multilevel Polynomial Partitions and Simplified Range Searching
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F15%3A10315903" target="_blank" >RIV/00216208:11320/15:10315903 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/s00454-015-9701-2" target="_blank" >http://dx.doi.org/10.1007/s00454-015-9701-2</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00454-015-9701-2" target="_blank" >10.1007/s00454-015-9701-2</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Multilevel Polynomial Partitions and Simplified Range Searching
Popis výsledku v původním jazyce
The polynomial partitioning method of Guth and Katz (arXiv:1011.4105) has numerous applications in discrete and computational geometry. It partitions a given n-point set using the zero set Z(f) of a suitable d-variate polynomial f. Applications of this result are often complicated by the problem, "What should be done with the points of P lying within Z(f)?" A natural approach is to partition these points with another polynomial and continue further in a similar manner. So far this has been pursued withlimited success-several authors managed to construct and apply a second partitioning polynomial, but further progress has been prevented by technical obstacles. We provide a polynomial partitioning method with up to d polynomials in dimension d, which allows for a complete decomposition of the given point set. We apply it to obtain a new algorithm for the semialgebraic range searching problem. Our algorithm has running time bounds similar to a recent algorithm by Agarwal et al. (SIAM J C
Název v anglickém jazyce
Multilevel Polynomial Partitions and Simplified Range Searching
Popis výsledku anglicky
The polynomial partitioning method of Guth and Katz (arXiv:1011.4105) has numerous applications in discrete and computational geometry. It partitions a given n-point set using the zero set Z(f) of a suitable d-variate polynomial f. Applications of this result are often complicated by the problem, "What should be done with the points of P lying within Z(f)?" A natural approach is to partition these points with another polynomial and continue further in a similar manner. So far this has been pursued withlimited success-several authors managed to construct and apply a second partitioning polynomial, but further progress has been prevented by technical obstacles. We provide a polynomial partitioning method with up to d polynomials in dimension d, which allows for a complete decomposition of the given point set. We apply it to obtain a new algorithm for the semialgebraic range searching problem. Our algorithm has running time bounds similar to a recent algorithm by Agarwal et al. (SIAM J C
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GBP202%2F12%2FG061" target="_blank" >GBP202/12/G061: Centrum excelence - Institut teoretické informatiky (CE-ITI)</a><br>
Návaznosti
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Discrete and Computational Geometry
ISSN
0179-5376
e-ISSN
—
Svazek periodika
54
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
20
Strana od-do
22-41
Kód UT WoS článku
000355340300003
EID výsledku v databázi Scopus
2-s2.0-84930576142