Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Multilevel Polynomial Partitions and Simplified Range Searching

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F15%3A10315903" target="_blank" >RIV/00216208:11320/15:10315903 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1007/s00454-015-9701-2" target="_blank" >http://dx.doi.org/10.1007/s00454-015-9701-2</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00454-015-9701-2" target="_blank" >10.1007/s00454-015-9701-2</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Multilevel Polynomial Partitions and Simplified Range Searching

  • Popis výsledku v původním jazyce

    The polynomial partitioning method of Guth and Katz (arXiv:1011.4105) has numerous applications in discrete and computational geometry. It partitions a given n-point set using the zero set Z(f) of a suitable d-variate polynomial f. Applications of this result are often complicated by the problem, "What should be done with the points of P lying within Z(f)?" A natural approach is to partition these points with another polynomial and continue further in a similar manner. So far this has been pursued withlimited success-several authors managed to construct and apply a second partitioning polynomial, but further progress has been prevented by technical obstacles. We provide a polynomial partitioning method with up to d polynomials in dimension d, which allows for a complete decomposition of the given point set. We apply it to obtain a new algorithm for the semialgebraic range searching problem. Our algorithm has running time bounds similar to a recent algorithm by Agarwal et al. (SIAM J C

  • Název v anglickém jazyce

    Multilevel Polynomial Partitions and Simplified Range Searching

  • Popis výsledku anglicky

    The polynomial partitioning method of Guth and Katz (arXiv:1011.4105) has numerous applications in discrete and computational geometry. It partitions a given n-point set using the zero set Z(f) of a suitable d-variate polynomial f. Applications of this result are often complicated by the problem, "What should be done with the points of P lying within Z(f)?" A natural approach is to partition these points with another polynomial and continue further in a similar manner. So far this has been pursued withlimited success-several authors managed to construct and apply a second partitioning polynomial, but further progress has been prevented by technical obstacles. We provide a polynomial partitioning method with up to d polynomials in dimension d, which allows for a complete decomposition of the given point set. We apply it to obtain a new algorithm for the semialgebraic range searching problem. Our algorithm has running time bounds similar to a recent algorithm by Agarwal et al. (SIAM J C

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    IN - Informatika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GBP202%2F12%2FG061" target="_blank" >GBP202/12/G061: Centrum excelence - Institut teoretické informatiky (CE-ITI)</a><br>

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2015

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Discrete and Computational Geometry

  • ISSN

    0179-5376

  • e-ISSN

  • Svazek periodika

    54

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    20

  • Strana od-do

    22-41

  • Kód UT WoS článku

    000355340300003

  • EID výsledku v databázi Scopus

    2-s2.0-84930576142