Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Quasistatic adhesive contact delaminating in mixed mode and its numerical treatment

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F15%3A10317215" target="_blank" >RIV/00216208:11320/15:10317215 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/67985556:_____/15:00428840 RIV/61388998:_____/15:00428840

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1177/1081286513507942" target="_blank" >http://dx.doi.org/10.1177/1081286513507942</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1177/1081286513507942" target="_blank" >10.1177/1081286513507942</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Quasistatic adhesive contact delaminating in mixed mode and its numerical treatment

  • Popis výsledku v původním jazyce

    An adhesive unilateral contact between visco-elastic bodies at small strains and in a Kelvin-Voigt rheology is scrutinized, neglecting inertia. The flow-rule for debonding the adhesive is considered rate independent, unidirectional, and non-associative due to dependence on the mixity of modes of delamination, namely Mode I (opening) needs (= dissipates) less energy than Mode II (shearing). Such mode-mixity dependence of delamination is a very pronounced (and experimentally confirmed) phenomenon typically considered in engineering models. An efficient semi-implicit-in-time FEM discretization leading to recursive quadratic mathematical programs is devised. Its convergence and thus the existence of weak solutions is proved. Computational experiments implemented by BEM illustrate the modeling aspects and the numerical efficiency of the discretization.

  • Název v anglickém jazyce

    Quasistatic adhesive contact delaminating in mixed mode and its numerical treatment

  • Popis výsledku anglicky

    An adhesive unilateral contact between visco-elastic bodies at small strains and in a Kelvin-Voigt rheology is scrutinized, neglecting inertia. The flow-rule for debonding the adhesive is considered rate independent, unidirectional, and non-associative due to dependence on the mixity of modes of delamination, namely Mode I (opening) needs (= dissipates) less energy than Mode II (shearing). Such mode-mixity dependence of delamination is a very pronounced (and experimentally confirmed) phenomenon typically considered in engineering models. An efficient semi-implicit-in-time FEM discretization leading to recursive quadratic mathematical programs is devised. Its convergence and thus the existence of weak solutions is proved. Computational experiments implemented by BEM illustrate the modeling aspects and the numerical efficiency of the discretization.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    BA - Obecná matematika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA201%2F09%2F0917" target="_blank" >GA201/09/0917: Matematická a počítačová analýza evolučních procesů v nelineárních viskoelastických tekutinách</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2015

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Mathematics and Mechanics of Solids

  • ISSN

    1081-2865

  • e-ISSN

  • Svazek periodika

    20

  • Číslo periodika v rámci svazku

    5

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    18

  • Strana od-do

    582-599

  • Kód UT WoS článku

    000354121400006

  • EID výsledku v databázi Scopus

    2-s2.0-84930450567